83,126 research outputs found
A new multi-spectral imaging system for examining paintings
A new multispectral system developed at the National Gallery is presented. The system is capable of measuring the spectral reflectance per pixel of a painting. These spectra are found to be almost as accurate as those recorded with a spectrophotometer; there is no need for any spectral reconstruction apart from a simple cubic interpolation between measured points. The procedure for recording spectra is described and the accuracy of the system is quantified. An example is presented of the use of the system to scan a painting of St. Mary Magdalene by Crivelli. The multispectral data are used in an attempt to identify some of the pigments found in the painting by comparison with a library of spectra obtained from reference pigments using the same system. In addition, it is shown that the multispectral data can be used to render a color image of the original under a chosen illuminant and that interband comparison can help to elucidate features of the painting, such as retouchings and underdrawing, that are not visible in trichromatic images
Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels
The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. © 2013 Mowrey et al
Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles
A formula suitable for a quantitative evaluation of the tunneling effect in a
ferromagnetic particle is derived with the help of the instanton method. The
tunneling between n-th degenerate states of neighboring wells is dominated by a
periodic pseudoparticle configuration. The low-lying level-splitting previously
obtained with the LSZ method in field theory in which the tunneling is viewed
as the transition of n bosons induced by the usual (vacuum) instanton is
recovered. The observation made with our new result is that the tunneling
effect increases at excited states. The results should be useful in analyzing
results of experimental tests of macroscopic quantum coherence in ferromagnetic
particles.Comment: 18 pages, LaTex, 1 figur
The Inuence of Misspecified Covariance on False Discovery Control when Using Posterior Probabilities
This paper focuses on the influence of a misspecified covariance structure on
false discovery rate for the large scale multiple testing problem.
Specifically, we evaluate the influence on the marginal distribution of local
fdr statistics, which are used in many multiple testing procedures and related
to Bayesian posterior probabilities. Explicit forms of the marginal
distributions under both correctly specified and incorrectly specified models
are derived. The Kullback-Leibler divergence is used to quantify the influence
caused by a misspecification. Several numerical examples are provided to
illustrate the influence. A real spatio-temporal data on soil humidity is
discussed.Comment: 22 pages, 5 figure
Implementation of quantum algorithms with resonant interactions
We propose a scheme for implementing quantum algorithms with resonant
interactions. Our scheme only requires resonant interactions between two atoms
and a cavity mode, which is simple and feasible. Moreover, the implementation
would be an important step towards the fabrication of quantum computers in
cavity QED system.Comment: 4 pages, 3 figure
A Generative Product-of-Filters Model of Audio
We propose the product-of-filters (PoF) model, a generative model that
decomposes audio spectra as sparse linear combinations of "filters" in the
log-spectral domain. PoF makes similar assumptions to those used in the classic
homomorphic filtering approach to signal processing, but replaces hand-designed
decompositions built of basic signal processing operations with a learned
decomposition based on statistical inference. This paper formulates the PoF
model and derives a mean-field method for posterior inference and a variational
EM algorithm to estimate the model's free parameters. We demonstrate PoF's
potential for audio processing on a bandwidth expansion task, and show that PoF
can serve as an effective unsupervised feature extractor for a speaker
identification task.Comment: ICLR 2014 conference-track submission. Added link to the source cod
Confronting Synchrotron Shock and Inverse Comptonization Models with GRB Spectral Evolution
The time-resolved spectra of gamma-ray bursts (GRBs) remain in conflict with
many proposed models for these events. After proving that most of the bursts in
our sample show evidence for spectral "shape-shifting", we discuss what
restrictions that BATSE time-resolved burst spectra place on current models. We
find that the synchrotron shock model does not allow for the steep low-energy
spectral slope observed in many bursts, including GRB 970111. We also determine
that saturated Comptonization with only Thomson thinning fails to explain the
observed rise and fall of the low-energy spectral slope seen in GRB 970111 and
other bursts. This implies that saturated Comptonization models must include
some mechanism which can cause the Thomson depth to increase intially in
pulses.Comment: (5 pages, 3 figures, to appear in Proceedings of the Fourth
Huntsville Symposium on Gamma-Ray Bursts
- …
