433 research outputs found
Crystallization and preliminary X-ray diffraction characterization of the XccFimXEAL-c-di-GMP and XccFimXEAL-c-di-GMP-XccPilZ complexes from Xanthomonas campestris
c-di-GMP is a major secondary-messenger molecule in regulation of bacterial pathogenesis. Therefore, the c-di-GMP-mediated signal transduction network is of considerable interest. The PilZ domain was the first c-di-GMP receptor to be predicted and identified. However, every PilZ domain binds c-di-GMP with a different binding affinity. Intriguingly, a noncanonical PilZ domain has recently been found to serve as a mediator to link FimXEAL to the PilB or PilT ATPase to control the function of type IV pili (T4P). It is thus essential to determine the structure of the FimXEALPilZ complex in order to determine how the binding of c-di-GMP to the FimXEAL domain induces conformational change of the adjoining noncanonical PilZ domain, which may transmit information to PilB or PilT to control T4P function. Here, the preparation and preliminary X-ray diffraction studies of the XccFimXEALc-di-GMP and XccFimXEALc-di-GMPXccPilZ complexes from Xcc (Xanthomonas campestris pv. campesteris) are reported. Detailed studies of these complexes may allow a more thorough understanding of how c-di-GMP transmits its effects through the degenerate EAL domain and the noncanonical PilZ domain
Cosmological constraints on the generalized holographic dark energy
We use the Markov ChainMonte Carlo method to investigate global constraints
on the generalized holographic (GH) dark energy with flat and non-flat universe
from the current observed data: the Union2 dataset of type supernovae Ia
(SNIa), high-redshift Gamma-Ray Bursts (GRBs), the observational Hubble data
(OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation
(BAO), and the cosmic microwave background (CMB) data. The most stringent
constraints on the GH model parameter are obtained. In addition, it is found
that the equation of state for this generalized holographic dark energy can
cross over the phantom boundary wde =-1.Comment: 14 pages, 5 figures. arXiv admin note: significant text overlap with
arXiv:1105.186
Collaborative multidisciplinary management and expertise of cT2-3 locally advanced operable esophageal squamous cell carcinoma:two case reports
Background: The accurate clinical staging of esophageal squamous cell carcinoma (ESCC) is pivotal for guiding treatment strategies. However, the current precision in staging for clinical T (cT)2 and cT3 stages remains unsatisfactory. This article discusses the role of multidisciplinary teams (MDTs) in the clinical staging and formulation of neoadjuvant treatment strategies for locally advanced operable ESCC. These challenges underscore the importance of precise staging in the decision-making process for appropriate therapeutic interventions.Case Description: Through the lens of two patient case studies with locally advanced resectable ESCC, the article showcases the intricate process of treatment planning undertaken by MDTs. It captures a range of expert perspectives from Japan, China, Hong Kong (China), Korea, the USA, and Europe, focusing on the challenges of differentiating between cT2 and cT3 stages of the disease, which is a critical determinant in the management and therapeutic approach for patients.Conclusions: The article concludes that the accurate staging of ESCC is a cornerstone in determining the most suitable treatment strategies. It underscores the vital role that MDTs play in both clinical staging and the decision-making process for treatment. Highlighting the limitations in current diagnostic methods, the article emphasizes the urgent need for advanced research and the refinement of diagnostic tools to improve the precision of staging, particularly between the cT2 and cT3 stages. It suggests that future research should consider whether a reclassification of these stages could be warranted to enhance treatment planning and outcomes for patients with ESCC.<br/
Does accelerating universe indicates Brans-Dicke theory
The evolution of universe in Brans-Dicke (BD) theory is discussed in this
paper.
Considering a parameterized scenario for BD scalar field
which plays the role of gravitational "constant" ,
we apply the Markov Chain Monte Carlo method to investigate a global
constraints on BD theory with a self-interacting potential according to the
current observational data: Union2 dataset of type supernovae Ia (SNIa),
high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD),
the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and
the cosmic microwave background (CMB) data. It is shown that an expanded
universe from deceleration to acceleration is given in this theory, and the
constraint results of dimensionless matter density and parameter
are, and
which is consistent with the
result of current experiment exploration, . In
addition, we use the geometrical diagnostic method, jerk parameter , to
distinguish the BD theory and cosmological constant model in Einstein's theory
of general relativity.Comment: 16 pages, 3 figure
Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare
Laboratory experiments have been carried out to model the magnetic reconnection process in a solar flare with powerful lasers. Relativistic electrons with energy up to megaelectronvolts are detected along the magnetic separatrices bounding the reconnection outflow, which exhibit a kappa-like distribution with an effective temperature of ~109 K. The acceleration of non-thermal electrons is found to be more efficient in the case with a guide magnetic field (a component of a magnetic field along the reconnection-induced electric field) than in the case without a guide field. Hardening of the spectrum at energies ≥500 keV is observed in both cases, which remarkably resembles the hardening of hard X-ray and γ-ray spectra observed in many solar flares. This supports a recent proposal that the hardening in the hard X-ray and γ-ray emissions of solar flares is due to a hardening of the source-electron spectrum. We also performed numerical simulations that help examine behaviors of electrons in the reconnection process with the electromagnetic field configurations occurring in the experiments. The trajectories of non-thermal electrons observed in the experiments were well duplicated in the simulations. Our numerical simulations generally reproduce the electron energy spectrum as well, except for the hardening of the electron spectrum. This suggests that other mechanisms such as shock or turbulence may play an important role in the production of the observed energetic electrons
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
- …