73 research outputs found

    Primary structural dynamics in graphite

    Get PDF
    The structural dynamics of graphite and graphene are unique, because of the selective coupling between electron and lattice motions and hence the limit on electric and electro-optic properties. Here, we report on the femtosecond probing of graphite films (1–3 nm) using ultrafast electron crystallography in the transmission mode. Two time scales are observed for the dynamics: a 700 fs initial decrease in diffraction intensity due to lattice phonons in optically dark regions of the Brillouin zone, followed by a 12 ps decrease due to phonon thermalization near the Г and K regions. These results indicate the non-equilibrium distortion of the unit cells at early time and the subsequent role of long-wavelength atomic motions in the thermalization process. Theory and experiment are now in agreement regarding the nature of nuclear motions, but the results suggest that potential change plays a role in the lateral dynamics of the lattice

    Structural dynamics of surfaces by ultrafast electron crystallography: Experimental and multiple scattering theory

    Get PDF
    Recent studies in ultrafast electron crystallography (UEC) using a reflection diffraction geometry have enabled the investigation of a wide range of phenomena on the femtosecond and picosecond time scales. In all these studies, the analysis of the diffraction patterns and their temporal change after excitation was performed within the kinematical scattering theory. In this contribution, we address the question, to what extent dynamical scattering effects have to be included in order to obtain quantitative information about structural dynamics. We discuss different scattering regimes and provide diffraction maps that describe all essential features of scatterings and observables. The effects are quantified by dynamical scattering simulations and examined by direct comparison to the results of ultrafast electron diffraction experiments on an in situ prepared Ni(100) surface, for which structural dynamics can be well described by a two-temperature model. We also report calculations for graphite surfaces. The theoretical framework provided here allows for further UEC studies of surfaces especially at larger penetration depths and for those of heavy-atom materials

    A fuzzy characterization of QF rings

    Full text link

    Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy

    Get PDF
    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction (U-CBED) with a nanoscale probe beam for the quantitative retrieval of the time-dependent local distortion tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels

    Patient Choice and Willingness Toward Gatekeepers as First-Contact Medical Institutions in Chinese Tiered Healthcare Delivery System: A Cross-Sectional Study

    Get PDF
    Introduction: Gatekeeping mechanism of primary care institutions (PCIs) is essential in promoting tiered healthcare delivery system in China. However, patients seeking for higher-level institutions instead of gatekeepers as their first contact has persisted in the past decade. This study aims to explain patients' choice and willingness and to provide potential solutions.Methods: A survey was conducted among residents who had received medical care within the previous 14 days. Patients' choice and willingness of PCIs for first contact together with influencing factors were analyzed using binary logistic regression.Results: Of 728 sampled patients in Hubei, 55.22% chose PCIs for first contact. Patients who are older, less educated, with lower family income, not living near non-PCIs, with better self-perceived health status, only buying medicines, and living in rural instead of urban area had significantly higher probability of choosing PCIs. As of willingness, over 90% of the patients inclined to have the same choice for their first contact under similar health conditions. Service capability was the primary reason limiting patients' choice of PCIs.Conclusions: The gatekeeper system did not achieve its goal which was 70% of PCIs among all kinds of institutions for first contact. Future measures should aim to improve gate-keepers' capability

    Diffraction of Quantum Dots Reveals Nanoscale Ultrafast Energy Localization

    Get PDF
    Unlike in bulk materials, energy transport in low-dimensional and nanoscale systems may be governed by a coherent “ballistic” behavior of lattice vibrations, the phonons. If dominant, such behavior would determine the mechanism for transport and relaxation in various energy-conversion applications. In order to study this coherent limit, both the spatial and temporal resolutions must be sufficient for the length-time scales involved. Here, we report observation of the lattice dynamics in nanoscale quantum dots of gallium arsenide using ultrafast electron diffraction. By varying the dot size from h = 11 to 46 nm, the length scale effect was examined, together with the temporal change. When the dot size is smaller than the inelastic phonon mean-free path, the energy remains localized in high-energy acoustic modes that travel coherently within the dot. As the dot size increases, an energy dissipation toward low-energy phonons takes place, and the transport becomes diffusive. Because ultrafast diffraction provides the atomic-scale resolution and a sufficiently high time resolution, other nanostructured materials can be studied similarly to elucidate the nature of dynamical energy localization

    Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction

    Get PDF
    In materials, the nature of the strain–stress relationship, which is fundamental to their properties, is determined by both the linear and nonlinear elastic responses. Whereas the linear response can be measured by various techniques, the nonlinear behavior is nontrivial to probe and to reveal its nature. Here, we report the methodology of time-resolved Kikuchi diffraction for mapping the (non)linear elastic response of nanoscale graphite following an ultrafast, impulsive strain excitation. It is found that the longitudinal wave propagating along the c-axis exhibits echoes with a frequency of 9.1 GHz, which indicates the reflections of strain between the two surfaces of the material with a speed of ∌4 km/s. Because Kikuchi diffraction enables the probing of strain in the transverse direction, we also observed a higher-frequency mode at 75.5 GHz, which has a relatively long lifetime, on the order of milliseconds. The fluence dependence and the polarization properties of this nonlinear mode are entirely different from those of the linear, longitudinal mode, and here we suggest a localized breather motion in the a-b plane as the origin of the nonlinear shear dynamics. The approach presented in this contribution has the potential for a wide range of applications because most crystalline materials exhibit Kikuchi diffraction

    Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    Get PDF
    Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible

    Monocular depth estimation for glass walls with context: a new dataset and method

    Get PDF
    Traditional monocular depth estimation assumes that all objects are reliably visible in the RGB color domain. However, this is not always the case as more and more buildings are decorated with transparent glass walls. This problem has not been explored due to the difficulties in annotating the depth levels of glass walls, as commercial depth sensors cannot provide correct feedbacks on transparent objects. Furthermore, estimating depths from transparent glass walls requires the aids of surrounding context, which has not been considered in prior works. To cope with this problem, we introduce the first Glass Walls Depth Dataset (GW-Depth dataset). We annotate the depth levels of transparent glass walls by propagating the context depth values within neighboring flat areas, and the glass segmentation mask and instance level line segments of glass edges are also provided. On the other hand, a tailored monocular depth estimation method is proposed to fully activate the glass wall contextual understanding. First, we propose to exploit the glass structure context by incorporating the structural prior knowledge embedded in glass boundary line segment detections. Furthermore, to make our method adaptive to scenes without structure context where the glass boundary is either absent in the image or too narrow to be recognized, we propose to derive a reflection context by utilizing the depth reliable points sampled according to the variance between two depth estimations from different resolutions. High-resolution depth is thus estimated by the weighted summation of depths by those reliable points. Extensive experiments are conducted to evaluate the effectiveness of the proposed dual context design. Superior performances of our method is also demonstrated by comparing with state-of-the-art methods. We present the first feasible solution for monocular depth estimation in the presence of glass walls, which can be widely adopted in autonomous navigation

    Spatiotemporal Variation Analysis of Arctic Sea Ice Thickness and Volume Based on CryoSat-2 Altimetry Satellite Data

    Get PDF
    Sea ice monitoring is helpful to the research of the Arctic channels and climate environment. Through echo signal classification, re-tracking correction, and other techniques, data from the Cryosat-2 radar altimetry satellite between 2010 and 2020 facilitated the retrieval of Arctic sea-ice thickness and volume. The study subsequently analyzed the variations in the average thickness and volume of first-year ice and multi-year ice in the Arctic sea ice over the past decade. In the past decade, the volume of sea ice in the Arctic region fluctuates slightly. The multiyear ice changed greatly in 2013, while the first-year ice shows an increased rate of both winter growth and summer ablation. The presence of uncertainties arising from the fluctuations in sea ice density values and the intricate patterns of Arctic circulation might impart subtle biases in the measurements of sea ice thickness. However, the sea ice freeboard and thickness data inverted based on the Cryosat-2 data were validated by the data obtained through the Operation Ice Bridge (OIB), and the validation results indicated that they are correspondent
    • 

    corecore