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Monocular Depth Estimation for Glass Walls with
Context: A New Dataset and Method

Yuan Liang, Bailin Deng, Wenxi Liu, Jing Qin, and Shengfeng He, Senior Member, IEEE

Abstract—Traditional monocular depth estimation assumes that all objects are reliably visible in the RGB color domain. However, this

is not always the case as more and more buildings are decorated with transparent glass walls. This problem has not been explored

due to the difficulties in annotating the depth levels of glass walls, as commercial depth sensors cannot provide correct feedbacks on

transparent objects. Furthermore, estimating depths from transparent glass walls requires the aids of surrounding context, which has

not been considered in prior works. To cope with this problem, we introduce the first Glass Walls Depth Dataset (GW-Depth dataset).

We annotate the depth levels of transparent glass walls by propagating the context depth values within neighboring flat areas, and the

glass segmentation mask and instance level line segments of glass edges are also provided. On the other hand, a tailored monocular

depth estimation method is proposed to fully activate the glass wall contextual understanding. First, we propose to exploit the glass

structure context by incorporating the structural prior knowledge embedded in glass boundary line segment detections. Furthermore, to

make our method adaptive to scenes without structure context where the glass boundary is either absent in the image or too narrow

to be recognized, we propose to derive a reflection context by utilizing the depth reliable points sampled according to the variance

between two depth estimations from different resolutions. High-resolution depth is thus estimated by the weighted summation of depths

by those reliable points. Extensive experiments are conducted to evaluate the effectiveness of the proposed dual context design. Superior

performances of our method is also demonstrated by comparing with state-of-the-art methods. We present the first feasible solution for

monocular depth estimation in the presence of glass walls, which can be widely adopted in autonomous navigation.

Index Terms—Monocular Depth Estimation, Glass Detection, Line Segment Detection.

✦

1 INTRODUCTION

G LASS walls, such as glass facades and glass doors, are
common features in modern architecture. These design

elements introduce new challenges for autonomous navi-
gation systems. Distance measurements acquired by depth
or stereo cameras on these surfaces can be unreliable due
to their transparent and reflective properties. For instance,
many commodity depth sensors use active range-sensing
approaches such as time-of-flight and structured light, where
the sensor emits a light pulse or a unique known pattern
into the scene. This emitted light pulse or pattern may pass
through transparent objects, preventing accurate feedback of
glass walls to the receivers. Consequently, tasks that heavily
rely on capturing or estimating depth information, such
as visual navigation [1], [2], 3D object detection [3], [4] and
autonomous driving [5], [6], [7], can easily fail in the scenarios
involving glass walls (see Fig. 1(b)).
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Fig. 1: Two typical scenarios involving glass walls that cannot
be handled by existing autonomous navigation systems. The
first row shows an indoor scene with multiple glass walls
separated by opaque frames, while the second row presents
an outdoor glass wall without a discernible frame. (b): depth
estimation results from NeWCRFs [8] trained on the NYU
Depth V2 dataset [9], where the glass wall depths are not
accurately detected, potentially leading to mobile robots
or autonomous cars crashing into them. (c): our results
successfully estimate the depth levels of transparent glass
walls by incorporating structure and reflection contexts.

In this paper, we aim to estimate the depth levels
of transparent glass walls from a pure monocular vision
perspective. Several studies [10], [11], [12] have focused on
depth estimation for small transparent objects such as bottles
and cups. In these works, all transparent objects are placed
on an opaque surface such as a table, and the depth maps
are captured at relatively close distances, making them more
suitable for robotic manipulation tasks [11], [12]. Other glass
related datasets [13], [14] include annotated glass masks
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but do not provide depth annotations. Currently, there is a
lack of RGB-D datasets that capture diverse glass walls and
include well-annotated depth maps for both glass and other
reflective surfaces (e.g., walls and floors with ceramic tiles) to
accurately represent their true distances from depth sensors.

To address this gap, we construct the first RGB-D dataset
with glass walls and other glass structures, such as facades,
windows, doors, and railings, called the Glass Walls Depth
Dataset (GW-Depth Dataset). It includes 1,200 densely-
annotated images captured in various environments, using
two types of commodity depth sensors. The main challenge
in developing such a dataset is correcting depth values in
areas where they are missing or incorrect due to reflection
and transparency. We note that glass walls typically consist of
one or more flat glass panels, thus missing or incorrect depths
can be completed or corrected using neighboring points
that are coplanar with them. To achieve this, we manually
select multiple points with accurate depths to form a convex
polygon, enclosing an area with missing or incorrect depth.
These selected depth points are then used to interpolate the
ground-truth depths within the polygon’s interior.

Even with our well-annotated dataset, estimating depths
of transparent glass walls with monocular vision remains
challenging. Humans, unlike other species (such as birds that
frequently collide with transparent glass walls or windows),
can distinguish transparent obstacles due to their under-
standing of the surrounding context. This context cannot be
obtained merely by enlarging the receptive fields as prior
works have done [8], [15], [16], [17]. Instead, transparent glass
walls possess unique characteristics that require specialized
expert knowledge to describe. To this end, we explore two
types of contexts: glass structure context and reflection
context. The glass structure context is defined by the outer
frames of glass walls, which are more visually discernible
than the transparent interior (see Fig. 2(a)). To leverage this
structural information, we formulate a line segment detection
task to depict the structure of glass walls. High-scoring
line segments are selected to sample structure-embedded
features, which are then fed into a tailored point-guided
transformer to predict both depth levels and glass segments.
In addition, the reflection context is proposed to supplement
scenarios where the glass boundary is either absent in
the image or too narrow to be reliably recognized. We
identify glass walls by integrating reflection cues based
on a key observation: reflection properties can serve as
indicators of glass presence [14], [18], but these properties
are only available in images with sufficient resolution. As
shown in Fig. 2(b), the depth estimation results exhibit
significant differences (brighter regions in the variance map)
in reflection regions. We use this clue to reveal glass walls by
collecting a series of depth reliable points to inject reflection
understanding to complement the structure context.

Extensive experiments are conducted on our GW-Depth
dataset for depth estimation and glass segmentation tasks.
Our methodology on glass wall contextual understanding
achieves superior performances compared to state-of-the-art
methods trained on our dataset. We not only propose the
first glass walls depth dataset, but also demonstrate the first
feasible solution on monocular depth estimation that can
potentially benefit autonomous navigation.

In summary, the contribution of this paper is fourfold:

(a) Structure Context

Low-res High-res Variance Map Sampled Points

(b) Reflection Context

Fig. 2: We reveal transparent glass walls using two types
of contexts. The structure context (shown in the top row)
is based on detecting outer frames (displayed with colored
lines) of glass walls, which depicts the glass structure. The
reflection context (shown in the second row) is based on the
variation of reflective appearance across different resolutions.
Here we show a close-up view of the glass, where the bound-
aries are too narrow to be reliably recognized. Reflections can
be observed in this close-up view with high-resolution details
(marked by red curves), but these illumination properties
may be lost in a lower-resolution version of the image. The
depth estimations at two resolutions (shown at the bottom-
right corners) exhibit significant differences in reflection
regions (brighter regions in “Variance Map”). We leverage
this reflection clue to detect glass walls by sampling depth-
reliable points (denoted by colored circles in “Sampled
Points”) on the depth variance map.

• We introduce the first glass walls RGB-D dataset, which
captures diverse real-world scenarios and contains 1,200
images with well-annotated depth maps, glass masks, and
glass outlines.

• We develop a depth interpolation pipeline to generate
well-annotated depths, addressing the issue of missing or
incorrect depth values in transparent or reflective regions.

• We propose a dual-context approach for understanding
glass walls: the structure context is used to leverage infor-
mation from the glass outer frames, while the reflection
context handles scenarios where visible glass structures
are either absent or cannot be reliably recognized.

• Our work is the first feasible method for transparent glass
wall monocular depth estimation, and outperforms state-of-
the-art methods even when trained with the same dataset.

2 RELATED WORK

2.1 Monocular Depth Estimation

Recent work on monocular depth estimation employs deep
learning methods to extract multi-scale features, with varied
choices on training architecture, loss functions, and auxiliary
tasks. Given the significant differences between supervised
and self-supervised monocular depth estimation, we provide
separate summaries for each approach in the following.

Architecture choices and loss functions. Many self-
supervised methods focus on the correlations between
estimated depths and reconstructed RGB images derived
from adjacent monocular video frames [19] or stereo camera
pairs [20]. The photometric loss [19], [20] is typically used to
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indirectly supervise the estimated depths. Recent works [21],
[22], [23], [24] aim to address the limitations of photometric
loss, including issues related to ego motion, occlusion, and
scale ambiguity, etc.. Godard et al. [21] apply photometric loss
only on pixels with the minimum appearance reconstruction
error, which are more likely to be in non-occlusion areas.
Guizilini et al. [22] sample appearance-matching points along
depth-discretized epipolar lines to mitigate ambiguities and
local minima caused by a lack of texture and ego motion.
RM-Depth [23] integrates predictions of motion fields and
camera poses to address artifacts caused by moving objects..
Petrovai et al. [24] use a scale-invariant loss function in a
teacher-student network to alleviate scale ambiguity issues.

In supervised monocular depth estimation, various ar-
chitecture choices have been explored. Eigen et al. [15] use a
CNN network with a coarse-scale encoder and fine-scale de-
coder. They propose a scale-invariant loss to address the scale
ambiguity issue, encouraging each pair of predicted depths to
have a similar scale of difference to their corresponding pair
in the ground truth. Following this, Eigen and Fergus [25]
add depth gradient errors to the scale-invariant loss to
promote predictions with similar local structures. Residual
block-based CNN networks [26] bring more local-global
context relations, which are widely used in depth estimation.
With these CNN encoders, implicit geometry restrictions
like coplanarity [16], [27] are introduced to facilitate depth
estimation. Lee et al. [16] add a local-planar guidance module
into the decoder, where 4D plane coefficients represent the
relationship within local grids, providing adaptive local
relations between different feature resolutions. Similar to [16],
P3Depth [27] independently learns plane coefficients and re-
samples offsets. Initial and refined depth maps are produced
using plane coefficients and resampled plane coefficients,
respectively. A confidence map is predicted to adaptively
fuse the two depth maps for refined depth estimation. Taking
advantage of the larger context enabled by transformer
networks, Yang et al. [17] and NeWCRFs [8] use transformer
blocks in the decoder part; a gated attention module [17]
or a neural window fully-connected CRFs module [8] is
appended at each level of the decoder to combine multi-scale
feature maps. Another line of works [28], [29], [30] treats
depth estimation as an ordinal regression problem. Depth
labels are discretized into predefined [28], [29] or learned [30]
intervals, with classification scores predicted for each depth
interval. These scores are then used to generate weighted
average estimated depths.

Similar to Yang et al. [17], our proposed method adopts
a transformer decoder on minimum scale features (e.g. 1

32
resolution). However, instead of directly using vision trans-
former (ViT) blocks, we design a novel attention layer that
incorporates glass structure features derived from the glass
boundary line segments.

Depth estimation with auxiliary tasks. In self-supervised
monocular depth estimation, auxiliary tasks such as seg-
mentation [31], simultaneous localization and mapping
(SLAM) [32], optical flow [32], [33], multiscale fusion [34],
and relative depth estimation [35], are incorporated to help
improve correspondence between multiple frames [32], [33]
or maintain consistency between global structures and local
details [31], [34], [35].

Recent works [36], [37], [38], [39] aim to introduce prior
knowledge to address the challenges in supervised depth
estimation by exploring joint tasks like semantic segmenta-
tion, surface normal estimation, and depth estimation. Xu et
al. [36] design an encoder that generates intermediate multi-
task predictions, which are then refined using a distillation
module. TRL [37] and PAP [38] focus on creating task-specific
attention maps or affinity matrices, connected using gated
attention [37] or adaptive combination [38]. Lu et al. [39]
train multi-task models independently but link them with a
consistency loss based on physical and logical constraints.

Our multi-task architecture also includes auxiliary tasks
including line segment detection and semantic segmentation.
These tasks assist the dual context exploration: glass bound-
ary line segment detection provides structure context, while
glass segmentation helps correct potential inaccuracies in
structure context, especially in scenes where the glass outline
is absent or hard to recognize reliably.

2.2 Transparent Object Understanding

Traditional computer vision tasks (like image classification
and object detection) assume the input visual information
to be sufficiently reliable. However, tasks such as visual
navigation, robotic manipulation, and novel view synthesis
can face unreliable observations and abnormal results due to
transparent objects. Recent work on transparent glass mainly
focuses on glass segmentation, depth estimation, and 3D
reconstruction or novel view synthesis.

Transparent or glass-like object segmentation. Transparent
or glass-like object segmentation [13], [14], [40], [41], [42],
[43] has made significant progress in recent years, with
new glass segmentation datasets featuring real-world scenes
being introduced [13], [14], [42]. Glass segmentation methods
require either the object’s intrinsic properties or a large
context to identify cues that indicate glass areas. Kalra
et al. [41] use a polarization camera to capture polarized
imagery, making transparent textures more visible. Xu et
al. [40] estimate the likelihood of a pixel belonging to a
transparent object using light-field linearity. Mei et al. [13]
design a model with a larger context by adopting separate
convolutions to extract abundant contexts from a large
field. Other works [14], [42], [43] use glass boundaries as
prior knowledge to facilitate segmentation, with dilated
convolutions [14], [42] or graph convolution networks [43]
employed to extract multi-scale, large context features.

Depth estimation on smaller transparent objects. Several
studies [10], [11], [12], [44] investigate depth estimation for
smaller transparent objects such as bottles or cups. Wang et
al. [10] use depth cues to localize semi-transparent objects.
ClearGrasp [11] introduces a synthetic RGB-D dataset for
transparent objects and refines the initial depth using a
multi-task architecture, which includes normal estimation,
boundary detection, and glass masking. Zhu et al. [12] ad-
dress the non-transparent contact dependency and inference
inefficiency of ClearGrasp by learning a local implicit depth
function (LIDF) for ray-voxel pairs, improving inference
efficiency and generalization to unseen data. While these
works [11], [12] primarily train on synthetic datasets, the
Booster Dataset [44] presents a stereo RGB-D dataset featur-
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Fig. 3: Six captured images and interpolated depths in our
GW-Depth dataset. The depth map is visualized in the
bottom-right corners.

ing indoor scenes with transparent and specular surfaces to
address real-world challenges.

Transparency-aware object reconstruction. To reconstruct
transparent objects, Transfusion [45] uses a segmentation
network to first eliminate the adverse influence of transparent
objects, resulting in more accurate camera poses. Transparent
objects are then reconstructed using a visual hull-based
method. To address inaccurate depth estimation and render-
ing in neural radiance fields (NeRF) models for transparent
objects, NeRFReN [46] separately models transmitted and
reflected parts of the scene with distinct neural radiance
fields. A dedicated network is also employed to leverage
geometry priors.

These works primarily focuses on smaller transparent
objects like glass cups, bottles, and vases, which does not
represent real-world scenarios involving large-scale glass
walls encountered by visual navigation systems. Moreover,
most studies treat depth estimation of transparent objects as
an auxiliary task to aid segmentation or 3D reconstruction
tasks. In contrast, we introduce an RGB-D dataset for
standard glass walls and propose a dual context embedded
deep neural network specifically designed to tackle the glass
depth estimation problem.

3 GLASS WALLS DEPTH DATASET

Our dataset aims to fill the gap in RGB-D datasets featuring
large glass walls, where typical depth cameras may be
unreliable. We use two commodity depth cameras, the Intel
RealSense Depth Camera D455 and the Microsoft Azure
Kinect DK, to capture RGB and depth images. In this section,
we present and analyze our dataset construction method.

3.1 Image and Depth Capturing

To include realistic scenes where commodity depth cameras
may be unreliable, the images were captured along corridors
with glass facades and glass guardrails. Our dataset includes
66 indoor and outdoor scenes, and the capturing period
include both daytime and nighttime. Each scene features var-
ious distances and views of glass walls, capturing the impact
of reflections on depth maps under different conditions.

For each scene, the depth maps are aligned with the
RGB images according to the intrinsic device parameters.
As explained later, our depth annotation approach relies on
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Raw Depth Map Interpolated Depth Map

Fig. 4: Depth interpolation on a captured image. The areas
with invalid depth are enclosed with polygons (see top
left, where different polygons are displayed in different
colors). Valid depth points for one polygon are shown
as red circles in the top-right image. Depth interpolation
occurs along polygon edges (blue lines) and connecting line
segments between edges (green lines). The raw depth map
and interpolated depth map are shown in the bottom row.

the availability of valid depth points that can be used to
interpolate the depth values in areas where the raw depth
map is unreliable. However, for some scenes with a large area
of transparent/specular materials, there may not be sufficient
valid depth points for our depth annotation. Therefore, where
necessary, we manually pasted thin opaque covers on corners
of glass walls, to provide valid depth points for interpolation.
In most cases, we also captured the same scene without
covers to preserve the original appearance. Fig. 3 shows
examples of captured images and our annotated depths.

3.2 Depth Correction and Dense Annotations

Invalid or missing depth values often appear in transparent
or specular areas, like glass walls or tiled floors (see an
example of a raw depth map in Fig. 4). Our key observation
is that such areas usually have a piecewise planar shape.
For example, a glass wall often consists of flat glass panels,
while a tiled surface is typically covered by coplanar tiles.
In addition, accessories on glass walls such as door handles
typically occupy a small area in the depth map and can be
ignored in many applications. Therefore, starting with a few
valid depth values on a planar piece, we can compute true
depth values for the rest of the area through interpolation. We
also include segmentation masks to differentiate glass from
other materials and annotate area boundaries. Our corrected
depth maps and dense annotations are created in three steps:

1) We first label polygons to enclose areas with incorrect
depth values, connecting vertices with valid depth values.

2) We then perform depth interpolation to correct depth
values within the polygons.

3) Finally, we crop out areas that still contain invalid
depth values due to insufficient valid depth points for
interpolation.

The details for each step are explained below.
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Fig. 5: Depth interpolation pipeline. Left: a polygon that
encloses an area with invalid depth values is first deprojected
into 3D space. Middle: the depth interpolation is conducted
on polygon edges (denoted by orange edges) and then on the
interior area (with green arrows connecting different edges).
Right: finally, the generated 3D points are projected back into
2D space to assign depth values for the corresponding pixels.

3.2.1 Labeling Polygons

We visually inspect the raw depth map and use Labelme1 to
manually label convex polygons around planar transparent
or specular regions. These polygons have vertices located
in areas with valid depth (see Fig. 4 for an example). As
explained in Sec. 3.1, we add opaque covers to corners of
such areas to ensure enough valid depth points for polygon
vertices. For consistency, the vertices of each polygon are
labeled in a counter-clockwise order. We also record all
polygons enclosing glass regions and use them to create
dense segmentation masks for those regions.

3.2.2 Depth Interpolation and Image Cropping

Using the labeled polygons and the transformation from
2D pixels to 3D coordinates, we generate ground-truth
depth maps by interpolating along the line segments using
valid depth values at their endpoints in the 3D space. The
interpolation pipeline has three steps, as shown in Fig. 5.

First, we create 2D polygons with vertices that have valid
depth values, as explained in Sec. 3.2.1. we use the camera’s
intrinsic parameters to determine the 3D coordinates of these
vertices based on their pixel coordinates and depth values
(see Fig. 5, middle). With the assumption that the polygon is
in a flat area, the segments of each 2D polygon are mapped to
3D straight line segments connecting the vertices. Therefore,
for a polygon segment connecting vertices A,B ∈ R

3, we
compute a set of intermediate points {Pk ∈ R

3} on the
segment as follows:

Pk = (1− αk)A+ αkB, k = 1, 2 . . . , (1)

where αk = (U · k)/∥A−B∥, and U is a unit distance (e.g.,
1mm) that controls the density of the intermediate points.

Afterward, 3D points for the interior regions of the poly-
gons are generated by computing points on line segments
with endpoints on different polygon edges (e.g., line segments
AS1 and AS2 in the middle figure of Fig. 5). Using the z-
coordinate as the depth value, these 3D points are then
projected back onto 2D pixels.

It is worth noting that each interpolated 3D point is
a convex combination of the valid 3D points used for
interpolation. Therefore, if the underlying surface area is
truly coplanar, then the error of the interpolated depth will
not exceed the maximum depth error among the valid points.

1. https://github.com/wkentaro/labelme

(a) Image (b) Depths (c) Hollowed (d) Ours

Fig. 6: Two example images for testing the interpolation
settings with a sample ratio of 50% and a unit distance of 6
millimeters. The interpolation areas are enclosed by polygons
in (a). The captured depth maps are visualized in (b). The
interpolation areas on the depth maps are hollowed (shown
in dark blue) in (c). (d) shows the completed depth maps
produced by our depth interpolation procedure.

Similarly, in nearly coplanar areas, the interpolated depth
will have not have a large error, provided that the depth
errors at the valid points are small. This property ensures the
reliability of our interpolation approach. See also Sec. 3.4 for
further validation.

Due to the large amount of line segments connecting
different edges, Interpolating at a millimeter-scale in 3D
space can be time-consuming. Moreover, multiple adjacent
collinear points may project to the same pixel due to limited
image resolution. To address this, we sample a predefined
ratio of points on each boundary edge and connect them
with intermediate points and vertices on other edges to form
line segments for interior interpolation. To further reduce
computation, we set a large enough unit distance parameter
U to decrease the number of computed points while ensuring
sufficient density for the final depth map.

To evaluate the impact of different sample ratios and unit
distance parameters, we captured three non-glass scenes with
valid depth maps (two example images are shown in Fig. 6).
We took two images for each scene, enclosed some flat areas
with polygons, and set the depth values inside the polygons
to zero to simulate invalid depth areas. We then used our
interpolation method to correct the depth values inside these
polygons, and compared the original depth maps as ground-
truth to assess the accuracy of our interpolated results. We
used the root mean squared error (RMS) and average relative
error (REL) as evaluation metrics. Specifically, let P be the
set of valid depth points in the ground-truth depth map, and
yp, ŷp be the ground-truth and estimated depth values for a
point p ∈ P , respectively. The two metrics are defined as:

• Root mean squared error (RMS ):

RMS =

√(∑
p∈P

(yp − ŷp)2
)
/|P|. (2)

• Average relative error (REL ):

REL =
(∑

p∈P
|yp − ŷp|/yp

)
/|P|. (3)

Tab. 1 compares the RMS, REL and computational time (in
seconds) for various sampling ratio and unit distance settings.
It shows that the accuracy improves with a higher sample
ratio and lower unit distance, but the computational time can
grow exponentially. As a result, we set the unit distance to 6
millimeters and the sample ratio to 50% to strike a balance
between accuracy and efficiency.
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TABLE 1: Comparison of depth interpolation accuracy and
computational time using different settings of unit distance
and sampling ratio.

Dist.
Ratio = 0.1 Ratio = 0.2 Ratio = 0.5

RMS REL Time RMS REL time RMS REL Time
20 0.108 0.011 83 0.108 0.011 85 0.108 0.011 85
10 0.092 0.009 336 0.092 0.009 339 0.091 0.009 447
6 0.091 0.009 960 0.091 0.009 1005 0.090 0.009 1815
3 0.090 0.009 4978 0.090 0.009 6957 0.090 0.009 15695

TABLE 2: The number of instances and pixel ratios for four
types of glass in our glass RBG-D dataset.

Labels Glass Wall Window Glass Door Glass Railing Total
Inst. num 3278 404 817 53 4552
Pixel ratio 0.37 0.06 0.2 0.04 0.67

In some areas of the raw depth map, we may not be able
to correct the depth values due to insufficient valid depth
points for interpolation. Thus, as the final step, we crop the
completed depth maps and the corresponding segmentation
masks to remove such areas as much as possible.

3.3 Dataset Split

In total, our GW-Depth dataset has 1,200 images from 66
scenes, with varying numbers of images per scene. We
randomly split the images into the training set and the test
set, while ensuring the scenes in the training set do not
appear in the test set. The training set has 55 scenes with
1,018 images, and the test set has 11 scenes with 182 images.

Our dataset mainly features school buildings and shop-
ping malls with four types of glass elements: glass walls,
glass doors, glass windows, and glass railings. Tab. 2 shows
the total number of instances for each element type and
the ratio of total pixels for each type to all image pixels.
Glass walls, often found in public buildings and embedded
in small frames, make up 37% of all pixels and 72% of all
glass element instances. Glass doors are larger than other
glass elements, accounting for 20% of all pixels but only 817
instances. Glass windows and guardrails represent smaller
proportions in the dataset but contribute to its diversity.

Fig. 7(a) shows a histogram of the ratio between the total
area of glass elements and the total image area in our dataset.
For most images, glass elements make up more than 60% of
the image area. Fig. 7(b) further shows the distribution of
depth ranges for glass elements in the images. Most glass
elements have depth values no larger than 6 meters, but
some glass walls with depth values beyond 6 meters pose
more challenges to depth estimation.

3.4 Depth Annotation Analysis

To evaluate the quality of our annotated depth maps in real
scenes, we additionally capture 12 images from 6 scenes
of glass walls. For each scene, the original glass walls and
depths are captured at first. With the same camera position,
we then manually cover the glass walls with opaque flats
(e.g., thin cardboard and thin mat) and capture the image
and depth map thereafter, which is considered as the ground
truth of our annotation. We measure the depth differences
between the captured depths of covered glass walls and our
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Fig. 7: Statistics of our GW-Depth dataset. It shows that
glass areas make up a significant portion of image pixels,
increasing the challenge of depth estimation. Most depth
values are within 6 meters, reflecting real-world scenarios.

Original Covered Covered GT Ours

Fig. 8: Examples of captured covered GT and our generated
depths. The first column (“Original”) shows the original
glass walls, where we highlight the areas to conduct depth
interpolation by colored polygons. Our annotations show
minor differences with the manually covered GT.

annotated depths (only the covered areas are computed).
The depth errors are 0.087, 0.076, and 0.043 for metrics of
RMS, RMSlog, and REL, respectively. All inputs for metrics
have a unit of meter. Thus, the error of our annotated depths
is generally less than 0.09 meters, which is consistent with
the thickness of our used opaque flats. Three examples of
captured glass walls are shown in Fig. 8.

4 METHODOLOGY

Our proposed model consists of a ResNet encoder and a
dual context embedded decoder, which includes a structure
context stage and a reflection context stage. The outputs
from ResNet’s convolution layers (denoted by light green
rectangles in Fig. 9(a)) are fed into their corresponding
decoder layers (illustrated in Fig. 9(a) with red rectangles for
the structure context stage and deep green rectangles for the
reflection context stage). Each stage of the decoder operates
at different resolutions, with the structure context stage at 1

32
of the input resolution (i.e., W

32 × H
32 for an input in resolution

W ×H), and the reflection context stage at 1
16 , 1

8 and 1
4 of

the input resolution respectively.

As shown in Fig. 9(a), the glass boundary line segments
are predicted in the structure context stage, and their end-
points are used as sampling points to collect point features
representing the glass structure. To create the structure
context, we propose a point-guided transformer (PGT) block
that takes unrefined global features and sampled glass
structure features as input. The attention map within the PGT
block is created between global features and each sampled
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Fig. 9: (a) Overview of our proposed method. With multiscale features from ResNet (in light green), our structure context
stage (in orange) predicts glass line segments. The line segment endpoints guided transformer layers (SGT Layers) refine
features with glass structure context and produce an initial depth estimation D0D0D0. The reflection context stage (in deep
green) uses refined features and Class Tokens to generate higher-resolution spatially refined features. The first CAT Layers
produce depth estimation D1D1D1 at 1/16 input size. The variance map V1V1V1, calculated using the square of differences (denoted
by ⊖) between D1D1D1 and upsampled D0D0D0, helps construct the reflection context and enables reflection context guided depth
estimation (RGD) at higher resolutions. Final class tokens, features, and depths combine for full-size depth estimation
and glass segmentation via multiple convolution layers (Conv Upsample). (b) Architecture of the structure context guided
transformer block (SGT).

structure point feature (shown in Fig. 9(b)), which is then
used as structure guidance to refine the global features.

As the structure context can be invalid when the glass
boundaries either are absent or cannot be reliably recognized,
the proposed reflection context stage can provide compen-
sation at higher resolutions. Depth estimation with large
variances between adjacent layers (e.g., depth estimations
at resolutions of W

16 × H
16 and W

8 × H
8 where W ×H is the

input resolution) are leveraged as anchor points. Using long
dependency embedded attention weights in the reflection
context, global depths at higher resolutions are estimated
through the weighted summation of the anchor point depths.

4.1 Structure Context

Line segment detection for glass walls. Most glass walls
have visible outer frames that are roughly coplanar with the
glass they enclose. Detecting these glass outlines can help
with glass wall identification and depth estimation. Rather
than using the dense glass outer frame, we use corner points
to represent the glass structure, as each frame segment can be
formed by joining two corner points. These corner points are
used to create the structure context (as explained in Sec. 4.1).

Specifically, we use an end-to-end, proposal-free line
segment detection method LETR [47] as our glass line
segment detection model. LETR employs a transformer-
based multi-scale encoder/decoder and multi-scale predic-
tion heads to generate S line segment predictions with a size
of S × Pcoor × 2 and their classification scores with a size
of S × Pcls × 2, where S is a pre-defined number. Each line
segment prediction contains the 2D coordinates for the two

endpoints, while the classification scores are the outputs of
an MLP layer and indicate the confidence of the predicted
line segments being true line segments. We refer to these
classification scores as the confidence scores.

In our approach, each line segment is represented by
its two endpoints and the center point of the glass wall
it belongs to, which helps promote learning of glass struc-
tures. Typically, the predefined number S of predicted line
segments is larger than the number of ground truth line
segments in an image. Therefore, a bipartite (Hungarian)
matching operation is performed between the prediction set
and the ground truth set to determine which predictions
correspond to actual line segments.

Let the set of ground-truth line segments be denoted
by {L(j) | j = 1, ..., T}, and the set of predicted line

segments be denoted by {L̂(i) | i = 1, ..., S}} where each

line segment L̂(i) has a confidence score c(i). We use an
injective function σ : {1, . . . , T} 7→ {1, . . . , S} to represent
the matching between the ground-truth line segments and
their corresponding predictions, such that the ground truth

Li corresponds to the prediction L̂(σ(i)). We compute the best
matching by solving the following optimization problem

min
σ

∑S

i=1
λ1d(L̂

(i), L(σ(i)))− λ2c
(i),

where d(·, ·) denotes the ℓ1 distance between the coordinates
of line segments, and λ1, λ2 are balancing weights. The
optimization aims at finding the best bipartite matching
that reduces the total distance between the ground truth
and the prediction while increasing highest total confidence
scores. The problem is solved using the Hungarian algorithm.
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(a) Ground-truth Line Segments for Glass Walls

(b) Detected Line Segments

Fig. 10: An example of ground-truth and detected line
segments: In the ground-truth (a), each glass instance is
enclosed by at least three line segments, with its geometry
center displayed as a circle matching the line segment color.
Line segment endpoints are marked with triangles. For
detected line segments (b), show the line segments with
the top 22 classification scores, marking their endpoints
with upward triangles and crosses. Each line segment has a
predicted glass center, also shown as a circle.

Fig. 10 shows an example of ground-truth line segments and
their corresponding predictions.

Glass structure guided transformer block. Our glass
structure guided transformer (SGT) block is based on
the Swin Transformer (ST) block [48], which computes
representations within windows. The SGT block has two
branches (see Fig. 9(b)): (1) a vanilla multi-head self-attention
embedded patch branch that divides input features into non-
overlapping local patches to learn relationships within the
patches (shown on the left of Fig. 9(b)); (2) a structure point
branch that establishes relationships between glass corner
points and patches (shown on the right of Fig. 9(b)). We only
use the ST block without the patch merging procedure after
layers of ST block as proposed in [48], since it is typically
designed for encoder models rather than decoder models.
We use a multi-layer perceptron (MLP) layer to process the
output of ST blocks.

An SGT block takes in standard CNN feature maps with
C channels, f ∈ R

C×H×W (omitting the batch dimension for
clarity). Two operations are performed on f for each branch:
patch dividing for the patch branch and bilinear sampling

for the structure point branch.
For the patch branch, the input features f are divided

along the spatial dimension using a patch size of M × M .
This conversion changes the spatial size from H × W to
H
NH

× W
NW

× M × M , where H
NH

and W
NW

represent the
number of patches in the H and W dimensions, respectively.
With N = H

NH

× W
NW

, the divided feature patches fw ∈
R
C×N×M×M are fed into an MLP to generate key, query, and

value feature maps (denoted as K , Q, and V respectively in
Fig. 9(b)), each having the same size as fw.

For the point branch, to select sampling points before-
hand, the detected line segments are first sorted by their
confidence scores (as described in Sec. 4.1). The top PL

predicted line segments are selected for glass structure
guidance. Using the endpoints of the selected line segments,
the structure feature vectors fp ∈ R

C×2×PL are sampled
accordingly by bilinear interpolation from the input feature
map f . Note that the second dimension of fp has a size of
2 for the two endpoints of each line. Since the position
relationship is lost during sampling, we add sinusoidal
position embeddings [49] to fp. Thereafter, fp is reshaped to
C × 1×P where P = 2×PL, and we call its last dimension
the point dimension. fp is fed into an MLP layer to generate
structure key features KP and structure value features VP ,
both with the same size as fp.

To build structure context between patches Q and struc-
ture feature vectors KP and VP , the latter two feature vectors
are repeated along the point dimension, expanding their size
from C × 1× P to C ×N × P . This ensures that each patch
of Q (with a size of C × N × M × M ) has corresponding
structure features. Next, a matrix multiplication is performed
between Q and KP across the divided channel groups, which
have C channels split into h groups, each having d = C

h

channels. This multiplication generates structure context

relation embedded query feature maps Qctx ∈ R
h×N×M2×P .

The structure context Qctx generation can be described as:

Qctx =
Q⊗ (RP(Norm(KP )))

T

√
d

, (4)

where Norm(·) denotes layer normalization [50] and RP(·)
represents the repetition of point feature vectors for each
patch of Q. ⊗ denotes the matrix multiplication between Q
and the results of RP(·). To further combine the structure
context relation map Qctx and consider more cross-patch
correlations, Qctx is first reshaped with all patches grouped
into one dimension and all point features grouped into

another dimension, resulting in Qctx ∈ R
h×Ĥ×P , where

Ĥ = N × M2. Next, Qctx is fed into a convolution-based
fusion model (denoted as Conv Fusion in Fig. 9(b)). This
model is partly inspired by object-centric learning [51], which
projects global features into predefined slots representing
objects or entities in the input. They use a Gated Recurrent
Unit (GRU) [52] to globally construct the fusion model.
In our SGT block, our goal is to recalibrate the structure
context by seeking more cross-patch relations, assigning
proper attention weights to previously selected structure
points already considering global structure. Therefore, we
choose a regular convolution-based model instead of a GRU
layer to iteratively perform local-global aggregation:

Qi
ctx = Qi−1

ctx +GELU(Norm(Conv(Qi−1
ctx ))).
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(a) Variance Maps (b) Sampled Points

Fig. 11: Two visualized variance maps and sampled depth
reliable points. The variance maps are calculated between
depth estimations at 1/32 and 1/16 input resolutions. The
“Sampled Points” are the points with top 30 values in
corresponding variance maps.
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Fig. 12: Diagram for the generation of depth variance. Small
triangles and circles in feature maps represent pixels in glass
areas (light green) and non-glass opaque areas (brown). “CAT
Layers” denotes class attention transformer layers.

The convolution-based aggregation is performed multiple
times (three times in our experiments) to generate fusion
bias, which is added to the result of the previous step.

After the fusion process, the structure context relation
maps Qctx are normalized using the softmax function across
the last dimension, creating structure context attentions. This
normalization ensures that the attention coefficients for all
structure points add up to one, helping the trained model
identify the most relevant structure points for each patch.
Next, the output Qfuse undergoes another multi-head self-
attention (MSA) [49] operation with the query patches K , and
the subsequent calculations resemble those of the standard
Swin Transformer [48] block. Finally, the patches are adjusted
using the guidance from the glass structure context.

4.2 Reflection Context

In cases where glass structures are missing or hard to detect,
we use reflection context to reveal glass walls. As discussed
and shown in Fig. 2(b) and Fig. 11, the reflection context
takes advantage of the reflection differences seen in low- and
high-resolution images. Areas with significant depth changes
between different resolutions of depths are more likely to be
reflection areas, making their features more correlated to the
glass rather than the background scene.
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Fig. 13: (a) Reflection context guided depth estimation
architecture, with ⊙ representing element-wise product. (b)
Pooling-based convolution fusion model diagram (”Pool Fu-
sion” in (a)). Green rectangles labeled (C1, C2,K) represent
convolution layers with input channel C1, output channel
C2, and kernel size K . “Up” denotes bilinear upsampling.

To leverage the reflection context, we first select a set of
reliable depth points based on the differences between initial
depth estimates at different resolutions (e.g., estimations at
1
32 and 1

16 of the input resolution, see Fig. 12). These points
serve two purposes: to build the reflection context and to
sample glass prior depths from low-resolution depth maps.
We predict higher resolution depths using the reflection
context weighted sum of sampled prior depths, as shown in
the pipeline in Fig. 13(a).

We will now explain the three main components of the
reflection context stage: the class attention based transformer
layers, the depth variance based reliable point sampling, and
depth estimation using reflection context and prior depths.

Class attention based transformer layers. After the structure
context stage, in the higher resolution part of the decoder
(called dense decoder), we use the patch branch of the trans-
former block mentioned in Sec. 4.1 and add a class attention
layer [53] for depth estimation and glass segmentation. This
helps incorporate more glass prior knowledge and address
potential incorrect structure context, especially when glass
boundaries cannot be reliably recognized. Different from [53],
which has single class token initialized for image classifi-
cation, our dense decoder performs depth estimation and
glass segmentation simultaneously. Therefore, we initialize
separate depth and segmentation tokens with a spatial size
of 1

32 of the input and 64 channels. We call the transformer
layers in the dense decoder Class Attention Transformer
(CAT) layers. CAT layers are placed at 1

16 , 1
8 , and 1

4 of the
input resolution (shown as deep green rectangles in Fig 9(a)).
We refer to these three layers as the first, second, and third
substages of the reflection context, respectively.

The dense decoder takes the output from the structure
context stage, which has a size of 1

32 of the input and 512
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channels. The outputs of the three substages include feature

maps F i
R ∈ R

Ci

r
×Hi×W i

, depth tokens T i
D ∈ R

Ct×Hi×W i

,

and segmentation tokens T i
S ∈ R

Ct×Hi×W i

, where i = 1, 2, 3
corresponds to the three substages. The feature channels Ci

r

are halved between substages, becoming 256, 128, and 64
respectively. The class token channels Ct remain the same.
The spatial size Hi and W i are doubled, with three substages
producing output feature maps at resolutions of 1

16 , 1
8 , and

1
4 of the input, respectively.

Reliable points sampling. Reliable points are sampled
from depth variances, which are calculated between two
resolutions of depth estimations created by CAT layers. As
shown in Fig. 9(a), the first two depth estimations (blue
parallelograms denoted by “D0” and “D1”) are generated
directly by multiple MLP layers (“FC”), while the last
two depth estimations (“D2” and “D3”) are produced by
depth reliable points guided reflection context (“RGD”). The
computation of two depth variance maps (“V1” and “V2” in
Fig. 9(a)) can be formulated as

D0 = Sig(MLP(Fs)), (5)

D1 = Sig(MLP(F 1
R, T

1
D)), (6)

Dj = Sig(RGD(F j
R, T

j
D)), j = 2, 3, (7)

Vk = ||Dk − Up↑(Dk−1)||2, k = 1, 2, (8)

where Fs are the output features from the structure context

stage. F j
R, T j

D, and Dj are the backbone features, depth
token, and depth estimation at the j-th substage, respectively.
MLP(·) denotes multiple MLP layers that generate depth log-
its, which are then normalized by a sigmoid function Sig(·).
RGD(·) is the reflection context guided depth estimation and
will be discussed in a later subsection. Depth variance maps
Vk (with k = 1, 2) are calculated by comparing depths Dk

at larger resolutions and bilinearly upsampled (denoted by
Up↑) depths Dk−1 at lower resolutions.

The depth variance map Vk is used to sample reliable
points, which are then utilized to construct reflection context
in the next substage. A simple approach for selecting reliable
points is to choose those with the highest variances. However,
this may lead to points being densely clustered in one
area, resulting in a biased reflection context. To obtain a
more diverse sampling, we take inspiration from recent
multi-view stereo methods [54], [55]. We first discretize the
depth estimation with higher resolution (Dk in Eq. (8)) into
predefined number of depth ranges, and then perform the
sampling within each depth range. We use the term ”bin”
for simplicity when referring to depth ranges. Suppose there
are NB bins, and we want to sample SP points from a depth
variance map with TP total points. After dividing the depth
estimation Dk into NB bins, the b-th bin contains Pb points.
We then calculate the number of reliable points Sb to be
sampled from the b-th bin based on the ratio of Pb to TP :

Sb = SP · Pb

TP

.

For each bin, we select the points with the top Sb variances
as reliable points. If the number of sampled points is less
than SP , we repeat the points to reach the predefined size.

Reflection context guided depth estimation. As shown
in Fig. 13(a), we use the selected reliable depth points to

sample point feature vectors from depth features (labeled
as ”P”) and prior depths from depth estimations (labeled as
”Low-Res Depths”). We multiply global features (labeled as
”G” in Fig. 13(a)) with point feature vectors produce a point-
to-global correlation embedded reflection context prior map.
With the reflection context prior map aggregated weights
regarding each sampled point, a new depth map with higher
resolution is predicted by taking a weighted average of the
prior depths.

Since the point feature vectors are sparsely sampled
using bilinear interpolation, it is necessary to explicitly
consider long-range dependencies to enhance the reflection
context prior map. While convolution-based fusion models
are effective for lower-resolution features in the structure
context stage, they are less efficient at higher resolutions
in the reflection context stage. To save computation and
GPU memory, we use multiple layers of average pooling
with varying kernel sizes to efficiently capture multi-scale
global information, as shown in Fig. 13(b). The input for
the reflection context prior map first goes through layers of
convolutions and residual blocks [26]. Then, the outputs are
fed into four average pooling layers, each followed by an
MLP layer. These four outputs are upsampled using bilinear
interpolation and concatenated along the channel dimension.
Finally, convolution layers process the concatenated features
and restore the feature channels to their original inputs.

Afterward, a softmax activation is applied to the reflection
context prior map along the point dimension to obtain
attention weights from each sampled point. These weights
are then multiplied with prior depths and summed over the
point dimension to generate a new depth estimation. Since
our sampling-based dual contexts focus on long-distance
correlations, we use traditional bilinear interpolation and
convolution layers to efficiently estimate full-size depth
and segmentation, resulting in smooth details. To fuse
depth features with backbone features, depth tokens, and
previously estimated low-resolution depths, we combine
them along the channel dimension and project them to a
fixed number of channels (64 in our case) using an MLP layer.
After two rounds of bilinear interpolation and convolution
layers, we obtain the full-size depth estimation. We use a
separate but identical module for glass segmentation.

4.3 Loss Function

We use the scale-invariant pixel-wise depth loss from [15] to
supervise multi-scale depth estimation results. For semantic
segmentation, we use cross entropy loss. The line segment
detection loss is the same as in LETR [47]. Based on the
selected positive line segments from the minimized bipartite
match, we compute the line segment classification loss using
cross entropy loss, and the associated line segment endpoints
loss using the ℓ1 loss.

Specifically, let the semantic segmentation prediction for
a pixel z in an image with Tpixel pixels be denoted by ŝz ,
and the ground-truth label be denoted by sz . Assuming
that Mline line segments are selected as positive prediction,
and the predicted two endpoints of line segment and
classification scores are ĝje1 , ĝje2 , and ĝjc for line segment
j. The corresponding ground-truth values are denoted as gje1 ,
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gje2 , and gjc respectively. The semantic segmentation loss and
line segment detection loss are defined as

Lseg =
(∑

z
H(ŝz, sz)

)
/Tpixel,

Lline =
(∑

j
(|ĝje1 − gje1 |+ |ĝje2 − gje2 |+H(ĝjc , g

j
c))

)
/Mline,

where H is the cross entropy loss

H(x, y) = −(y log (x) + (1− y) log (1− x)),

with x being the predicted logits and y being the ground-
truth label with a value 0 or 1.

Additionally, we have estimated depth values at four
resolutions ( 1

16 , 1
8 , 1

4 and full size). For each resolution r, let
nr be the number of valid depth points in that resolution.
The depth estimation loss for the resolution is defined as:

Lr
depth =

1

nr

∑

i

d2i −
1

n2
r

(
∑

i

di)
2,

where di is an error measure between the predicted depth pi
and the ground-truth depth p̂i of pixel i:

di = log pi − log p̂i.

The total loss is defined as

L = αLseg + βLline +
∑

r∈R

λrLr
depth,

where R denotes the set of four resolutions, and α, β, λr are
weights for different losses. We set α = 2, β = 1, and λr as
0.25, 0.25, 0.25 and 1 for the resolutions of 1

16 , 1
8 , 1

4 and full
size respectively.

5 EXPERIMENTS

In this section, we first explain the network structure and
training details. Next, we compare our method with other
depth estimation approaches. Finally, we investigate the
effectiveness of our proposed models with ablation studies.

5.1 Training Details

Our network is implemented using PyTorch [59] and trained
in an end-to-end manner. The network backbone is initial-
ized with pretrained weights from DETR [60]. We apply
AdamW [61], [62] as the optimizer with weight decay 10−4.
The initial learning rate is set to 10−5 for training the network
backbone and 10−4 for all the decoder layers. The learning
rate is reduced by a factor of 10 every 70 epochs. The model
is trained for 200 epochs on 4 Nvidia RTX 2080Ti GPUs.

5.2 Evaluation Metrics

We evaluate the performance of depth estimation using a set
of standard metrics. Let P be the set of valid depth points in
the ground-truth depth map, yp and ŷp be the ground-truth
and estimated depth values for a point p ∈ P , respectively.
Then we use the RMS and REL as defined in Eqs. (2) and (3)
to measure the accuracy. In addition, we adopt the following
metrics in our evaluation:

• Root mean squared log error (RMSlog ):

RMSlog =

√(∑
p∈P

(log(yp)− log(ŷp))
2
)
/|P|.

• Average log10 error (Log10):

Log10 =


∑

p∈P

| log10(yp)− log10(ŷp)|


 /|P|.

• Accuracy with threshold, defined as the percentage of points
in P where the ratio between the estimated and ground-
truth depth is smaller than a given threshold t:

At = |{p | max(yp/ŷp, ŷp/yp) < t}|/|P|.
We use three thresholds, 1.25, 1.252 and 1.253 for our
evaluation. We denote the three resulting metrics as σ1, σ2

and σ3 respectively, i.e.,

σ1 = A1.25, σ2 = A1.252 , σ3 = A1.253 .

For glass segmentation, we adopt the widely used Mean
IoU and pixel accuracy [37], [63], [64] as evaluation metrics.

5.3 Comparison with State-of-the-Art Methods

To demonstrate the performance of traditional depth estima-
tion methods [8], [16], [17], [30], [56], [57], [58] on transparent
glass walls, we evaluate the models trained on NYU depth
V2 [9] and tested on our GW-Depth dataset. The results in
Tab. 3 show that their generalization ability is reduced in
scenes with glass walls. Additionally, methods that incorpo-
rate structure prior from larger complementary datasets [56]
or uncertainty [58] derived from image gradients tend to
generalize better in these scenarios.

We further compare our method with recent depth
estimation methods [8], [17], [27], [30] by fine-tuning them
on the GW-Depth training set. The evaluation results on the
GW-Depth test set (Tab. 3) show significant improvements
compared to models trained on NYU Depth V2, indicating
the better annotation quality of our GW-Depth dataset. Our
method achieves better performance with fewer parameters
compared to other methods. For a fair comparison, we also
train our model on NYU Depth V2 without the structure
context. Specifically, to adapt our model for depth estimation
only, we remove the line detection decoder and replace
structure context guided transformer blocks in SGT layers
with standard Swin Transformer blocks. We also remove the
class token for segmentation in the reflection context. The
evaluation results (denoted by “Ours (w/o SC)” in Tab. 4)
show acceptable performance despite the limited parameters,
with a frame rate of 19.8 FPS on a single 3090Ti GPU.

To further evaluate the applicability of our method, we
switch back to using SGT layers in the decoder. The line seg-
ments of the NYU Depth V2 dataset are obtained beforehand
by the off-the-shelf line segment detection method LETR [47],
which provides structure points and classification scores
for the SGT layers. We further replace ResNet50 with swin
transformer backbone, and the resulting method (“Ours (w/
SGT, SB)”) achieves the best performance among compared
methods.

Several results are shown in Fig. 14. The top two rows
show glass walls with clear structure context, and the
bottom two rows show large glass walls with less noticeable
boundaries. Our method effectively estimates their depths,
especially at greater distances from the camera, while main-
taining consistent depth estimations across the glass walls.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

TABLE 3: Depth estimation comparison results on our proposed GW-Depth test set. The second row shows models trained
on NYU Depth V2 and evaluated on our GW-Depth test set. The third row displays off-the-shelf model performance
fine-tuned on our GW-Depth training set. The last row presents results from our proposed method.

Method σ1 ↑ σ2 ↑ σ3 ↑ REL ↓ RMS ↓ RMSlog ↓Log10 ↓ Parameters (×106)

Trained on
NYU Depth V2

BTS [16] (arXiv 19) 0.319 0.604 0.797 0.538 1.637 0.507 0.184 47
SANet [56] (ECCV 20) 0.462 0.845 0.957 0.246 0.71 0.16 0.117 163
AdaBins [30] (CVPR 21) 0.368 0.655 0.847 0.48 1.378 0.446 0.163 78
DPT [57] (ICCV 21) 0.303 0.521 0.671 0.771 2.027 0.580 0.219 123
TransDepth [17] (ICCV 21) 0.394 0.653 0.791 0.589 1.765 0.503 0.176 247
NeWCRFs [8] (CVPR 22) 0.368 0.633 0.792 0.6 1.957 0.528 0.182 270
GrUMoDepth [58] (Drop Model)
(ECCV 22)

0.439 0.711 0.868 0.357 1.04 0.431 - -

Trained on
GW-Depth

AdaBins [30] (CVPR 21) 0.682 0.946 0.994 0.165 0.435 0.172 0.071 78
TransDepth [17] (ICCV 21) 0.792 0.989 0.994 0.152 0.414 0.159 0.064 247
NeWCRFs [8] (CVPR 22) 0.851 0.965 0.997 0.123 0.324 0.13 0.052 270
P3Depth [27] (CVPR 22) 0.864 0.974 0.997 0.115 0.313 0.123 0.05 88
Ours 0.9 0.989 0.999 0.1 0.276 0.112 0.043 66

2.4m

4.9m

1.3m

2.6m

1.9m

3.4m

2.7m

6.5m

(a) Input (b) NeWCRFs [8] (c) P3Depth [27] (d) Ours (e) GT

Fig. 14: Visualized depth comparisons for methods trained on our GW-Depth dataset. Results predicted by the model with
distinct glass structures are in the first two rows, while those with inconspicuous glass structures are in the last two rows.
Visualized depths and depth error maps (where darker colors indicate larger errors) are shown from left to right in “(b)”,
“(c)”, and “(d)”, respectively.

TABLE 4: Depth estimation comparison results on the NYU
Depth V2 test set. All methods are trained on NYU Depth
V2. “Ours (w/o SC)” is our model trained without the glass
structure context and with the ResNet50 backbone. “Ours (w/
SGT, SB)” is our model trained with SGT Layers and swin
transformer backbone [48]. Column “P” lists the number of
parameters needed for each method.

Method σ1 ↑ σ2 ↑ σ3 ↑ REL ↓ RMS ↓Log10 ↓ P
AdaBins [30] 0.698 0.937 0.988 0.178 0.595 0.078 78
SANet [56] 0.899 0.983 0.996 0.098 0.376 0.042 163
TransDepth [17] 0.900 0.983 0.996 0.106 0.365 0.045 247
P3Depth [27] 0.898 0.981 0.996 0.104 0.356 0.043 88
Ours (w/o SC) 0.894 0.979 0.996 0.119 0.405 0.051 45
Ours (w/ SGT, SB) 0.917 0.990 0.998 0.098 0.339 0.042 237

5.4 Ablation Studies

We also conduct ablation studies to examine the effectiveness
of our proposed model components and determine the
optimal parameters.

Baseline model. To demonstrate the effectiveness of our
proposed components in the ablation studies, we first es-

TABLE 5: Depth estimation comparison for point guided
transformer block and reflection context guided depth es-
timation: “PGT” represents the point guided transformer
block replacing the vanilla Swin Transformer block in the
baseline model at the smallest scale of 1/32. “S” indicates
class attention (depth and segmentation) incorporated at
scales 1/16, 1/8, and 1/4. “D” refers to the convolution-
based fusion model in the point guided transformer block.
“RGD” denotes reflection context guided depth estimation.

Method σ1↑ σ2↑ σ3↑ REL↓ RMS↓ Log10↓ FPS
Baseline 0.847 0.98 0.995 0.12 0.342 0.053 15.4

PGT 0.879 0.985 0.997 0.113 0.317 0.049 13.2
PGT+S 0.877 0.983 0.997 0.108 0.304 0.047 13.1

PGT+S+D 0.894 0.985 0.997 0.102 0.292 0.044 12.9
PGT+S+D+RGD 0.9 0.989 0.999 0.1 0.276 0.043 11.4

tablish a baseline model. This model includes a ResNet50
backbone and a depth estimation decoder composed of three
types of layers for different resolutions. After the backbone,
four Swin Transformer blocks are used to obtain features at
1/32 of the original resolution. Multi-head class attention
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Line Seg Segmentation Line Seg Segmentation

Fig. 15: Glass line detection results with the top 56 scores (first
and third columns) and glass segmentation. The first row
shows accurate glass line segment detections. The bottom
left image has mostly false detections due to heavy reflection
from sunshine and small glass frames. Additionally, some
inaccurate line segments appear in the bottom right image
because of dark surroundings and ambiguous glass frames.

(CA) layers [53] are then employed for features at 1/16, 1/8,
and 1/4 of the original resolution, with 2, 2, and 1 layer(s)
for each resolution, respectively. Lastly, a convolution-based
upsampling module is added to achieve depth estimation
and glass segmentation at full resolution.

Structure context guided transformer. To assess the ef-
fectiveness of structural prior knowledge, we replace the
normal MSA layers at 1/32 of the original resolution in the
baseline model with the structure context-guided transformer
blocks from Sec. 4.1. We generate a predefined number of line
segments (set at 100) from the line segment detection decoder.
We then select a fixed number of line segments with the top
N classification scores, which include 2×N endpoints as the
glass structure guidance. These points are used to sample
glass structure feature vectors, as detailed in Sec. 4.1. The
performance comparison between the baseline model and
the one with structure-guided transformer is shown in Tab. 5.
We observe significant improvements in all metrics, which
highlights the effectiveness of glass structure guidance in
depth estimation.

Challenging factors such as small glass structures, heavy
reflections, or inconspicuous boundaries can lead to incorrect
detection of selected line segments, as shown in the second
row of Fig. 15. However, glass segmentation is more robust to
these conditions due to distinct glass appearances, potentially
correcting the adverse influence of incorrect glass structures.
Moreover, the convolution-based fusion model adjusts the
weights of the structure context-embedded point-to-global
attention by considering more cross-patch correlations. Abla-
tion studies on glass segmentation and the convolution-based
fusion model are presented in Tab. 5. We observe that the
glass segmentation-based model (“PGT+S”) reduces depth
error, and the fusion model (“PGT+S+D”) generally enhances
threshold accuracy.

We also examine the impact of the number of selected line
segments in Tab. 6. The model achieves the best performance
with 28 line segments. One possible reason is that too many
line segments may introduce more redundant or incorrect
line segments, while too few points cannot represent the

Images P1 P2

P3 P4

Fig. 16: Visualized attention maps for images with maximum
attention weights concentrated on only four glass structure
points (marked by colored circles with numbers 1-4 in
“Images”). “P1”-“P4” are attention maps computed using
maximum values along the channel dimension for points
1-4, respectively. Brighter colors indicate larger values. The
comparison shows that most attention weights are clustered
on one or two points only.

TABLE 6: Ablation study on the number of line segments
for constructing the structure context. This experiment is
conducted without considering the reflection context.

# Line Seg. σ1↑ σ2↑ σ3↑ REL↓ RMS↓ Log10↓ FPS
50 0.886 0.989 0.998 0.107 0.293 0.046 13.0
28 0.894 0.985 0.997 0.102 0.292 0.044 13.1
20 0.89 0.987 0.997 0.105 0.297 0.046 13.1

complete glass structure. In subsequent experiments, we
maintain the number of selected line segments at 28.

Despite using multiple glass lines to construct the struc-
ture context, we find that for a specific image, the most
relevant points tend to be concentrated on a few structure
points. As described in Sec. 4.1, the glass structure attention
maps have the shape of C ×H ×W ×Npnt (Npnt denotes
the number of structure points). By calculating the maximum
values along the C dimension, we obtain attention weights
between each pixel and each structure point. For the testing
set of the GW-Depth dataset, the statistics show that the
largest attention values for all images are concentrated on
less than 11 points on average. We show two examples
of images in Fig. 16, where each image has all its largest
structure attention weights concentrated on four structure
points only (denoted by colored circles in “Images”). With
the brighter colors indicating larger values, Fig. 16 shows
that most large attentions are clustered in one or two points
(the nearly full red attention maps). We conjecture that this
phenomenon is caused by the flat geometry of common glass
walls and the limited number of line segments of the glass
structures.

Reflection context guided depth estimation. The Reflection
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TABLE 7: Ablation study on reflection context guided depth
estimation.“w/o RGD” denotes our full model without
reflection context guided depth estimation (“PGT+S+D” in
Tab. 5). “R w/o P” and “R w/ P” denotes “RGD” without or
with pooling-based global correlation fusion module.

Areas Methods σ1↑ σ2↑ σ3↑ REL↓ RMS↓ Log10↓

Global
w/o RGD 0.894 0.985 0.997 0.102 0.292 0.044
R w/o P 0.876 0.987 0.998 0.110 0.289 0.048
R w/ P 0.9 0.989 0.999 0.1 0.276 0.043

Glass
w/o RGD 0.915 0.992 0.998 0.093 0.264 0.04
R w/o P 0.9 0.994 0.999 0.102 0.26 0.044
R w/ P 0.916 0.994 0.999 0.093 0.258 0.04

None-Glass
w/o RGD 0.891 0.978 0.996 0.105 0.312 0.046
R w/o P 0.869 0.986 0.999 0.113 0.323 0.05
R w/ P 0.886 0.988 0.999 0.106 0.31 0.046

TABLE 8: Ablation study on reliable points sampling depth
range. For simplicity, the sampling range “(a, b, c)” denotes
that sampling are performed within the depth ranges of (min,
a], (a, b], (b, c], (c, max), respectively. “(0)” denotes global
sampling without depth range.

Range σ1↑ σ2↑ σ3↑ REL↓ RMS↓ Log10↓

(1,2,3,4,5,6,7,8,9) 0.892 0.986 0.998 0.11 0.302 0.047
(1,3,5,7,9) 0.9 0.989 0.999 0.1 0.276 0.043

(1,5,9) 0.882 0.986 0.995 0.108 0.298 0.047
(5) 0.903 0.989 0.998 0.1 0.284 0.043
(0) 0.894, 0.988 0.998 0.106, 0.294 0.045

Context Guided Depth Estimation (RGD) primarily includes
depth reliable points sampling and a pooling-based fusion
module. We first compare the performance of models with
and without RGD and then conduct an ablation study on the
points sampling settings.

The performance of the model with RGD is shown in
the last row of Tab. 5. We observe that the RGD-adopted
model effectively reduces the RMS error. To specifically
investigate the influence of RGD and its pooling component,
we compare their performances in glass and non-glass areas
in Tab. 7. It is evident that the RGD model primarily improves
performance in glass areas. We deduce that the pooling-
based global correlation fusion module helps establish long-
distance correlations in glass areas while also mitigating
potential negative effects for non-glass areas.

The depth reliable points sampling is performed in
multiple predefined depth ranges. To find the best setting for
depth range, we first keep the number of sampling points at
30 and 80 for the first and second substages of the reflection
context stage, respectively. The results for different depth
ranges are shown in Tab. 8. We can see that too dense (the
second row of Tab. 8) or too sparse ranges (the last row)
result in inferior performance. This could be because the
optimal sampling intervals can collect more points with a
more favorable influence on global depth estimation (see the
third row of Tab. 8). Thus, we maintain the depth range of
(1,3,5,7,9) as the default in further ablation studies.

Generally, having too many points can result in unreliable
depth estimation due to the inclusion of depth-unreliable
points, and can also increase computation and memory costs.
Conversely, having too few sampling points can result in
too sparse point-to-global correlation, which is insufficient to
generate global depth estimation. We conduct experiments

TABLE 9: Ablation study on sampling reliable points number
for the first and second substages of reflection context stage.
For the setting “(P1, P2)”, P1 and P2 denote sampling
points number for the first and second substages respectively.

Point Number σ1↑ σ2↑ σ3↑ REL↓ RMS↓ Log10↓

(60, 160) 0.9 0.986 0.997 0.106 0.3 0.047
(40, 100) 0.89 0.985 0.999 0.106 0.298 0.046
(30, 80) 0.9 0.989 0.999 0.1 0.276 0.043
(15, 40) 0.874 0.98 0.996 0.114 0.314 0.049

First Sub Second Sub First Sub Second Sub

Fig. 17: Visualized depth reliable points in colors on the first
and second substages of reflection context stage. 30 and 80
points are sampled for the two substages, respectively.

to determine the optimal number of sampling points for the
first and second substages of the reflection context stage. The
results are shown in Tab. 9. We notice that a small number of
points (30 and 80 points) are sufficient to generate satisfactory
global depths, striking a balance between effectiveness and
efficiency.

Several images with sampled depth reliable points are
shown in Fig. 17. We observe that the sampled points are
more likely to locate at non-glass areas on the first substage.
On the second substage, more depth reliable points are
sampled within the glass areas adjacent to glass outer frames
or reflection regions.

5.5 Discussion

Effects of multi-task learning. As our network is devised in
a multi-task learning manner, it is necessary to quantitatively
verify the influence of each auxiliary task based on our
complete model. To evaluate glass line segment detection,
we remove the line detection branch and replace the structure
context guided transformer blocks with vanilla Swin Trans-
former blocks. We keep the reflection context guided decoder
with the optimal settings from Sec. 5.4, using a depth range
of (1, 3, 5, 7, 9) and setting the number of sampling points
to (30, 80). Glass segmentation models are in class attention
layers alongside depth attention layers. To evaluate glass
segmentation, we remove all segmentation related models
and only keep the depth attention models. Tab. 10 shows
the multi-task learning comparison results. Both auxiliary
tasks improve depth estimation, with glass line detection
providing a more significant performance boost.

Parameters on different components. The effectiveness of
the proposed components is also evident in the number
of parameters. Tab. 11 shows the parameter count for
different methods and settings. Three conclusions can be
drawn from the results. First, the structure context guided
transformer (“PGT”) improves performance with a 54.2%
increase in parameters, which is the main increase in our full
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TABLE 10: Ablation study on the influence of auxiliary tasks.
“✓” and “-” denotes the network is trained with or without
the corresponding task.

Line Seg. σ1↑ σ2↑ σ3↑ REL↓ RMS↓ Log10↓

- - 0.847 0.98 0.995 0.124 0.348 0.054
✓ - 0.881 0.984 0.999 0.11 0.301 0.047
- ✓ 0.87 0.982 0.995 0.115 0.328 0.05
✓ ✓ 0.9 0.989 0.999 0.1 0.276 0.043

TABLE 11: Quantity of parameters for the variants of
the models with different components and settings. “PGT”
denotes the point guided transformer adopted method. “Seg”
denotes the incorporating of glass segmentation. “Fusion”
denotes the convolution based fusion model adopted in
“PGT”. The “PGT+Seg+Fusion” model is simplified as “PGT-
Full”. “RGD” denotes our full reflection context model, and
its variant without pooling-based fusion model is denoted
as “RGD (no Pool)”. The methods with sampled number
of depth reliable points P1 and P2 for the first and second
substages are denoted as “RGD (P1, P2)”.

Method Parameters (×106) σ1 ↑ RMS ↓

Baseline 38.32 0.847 0.342
PGT 58.47 0.879 0.317

PGT + Seg 59.09 0.877 0.304
PGT + Seg + Fusion 59.10 0.894 0.292

PGT-Full + RGD (no Pool) 59.16 0.876 0.303
PGT-Full + RGD (15, 40) 60.93 0.874 0.314
PGT-Full + RGD (30, 80) 66.21 0.9 0.276
PGT-Full + RGD (40, 100) 70.39 0.89 0.298
PGT-Full + RGD (60, 160) 87.42 0.9 0.3

model. Second, multi-task learning (“PGT+Seg”) enhances
performance with an added 1.4M parameters, highlighting
the importance of a well-annotated dataset for supervised
depth estimation. Finally, the reflection context guided depth
estimation component requires a local-global reasoning
module (pooling-based fusion module) for better point-to-
global relations, increasing the network parameters by 7M
(comparing “PGT-Full+RGD (no Pool)” to the optimal setting
“PGT-Full+RGD (30,80)”).

Generalization on glass and transparent objects
datasets. We tested our method’s generalization by eval-
uating our model on Trans10K [42], a segmentation dataset
containing transparent objects captured in the wild. Fig. 18
shows several qualitative results, indicating successful trans-
parent glass detection and generally accurate depth estima-
tion. It is important to note that our model, trained on only
1,018 images, demonstrates improved generalization thanks
to our multi-task learning approach.

We further evaluate our model on the ClearGrasp
dataset [11], an RGB-D dataset for transparent objects such
as cups and bottles. Due to the large difference in depth scale
between GW-Depth (0.4-9.9 meters) and ClearGrasp (0.2-2
meters), our model trained on GW-Depth can effectively
predict the depth of supporting planar regions (e.g., tables,
basins, etc.), but struggled with transparent objects. The
performance comparisons on the ClearGrasp dataset are
shown in Tab. 12. Notably, while both ClearGrasp [11]
and LIDF [12] use the captured raw depths as input, our
method only requires RGB images and achieves comparable

(a) RGB Input (b) Depth (c) Seg (d) Line

Fig. 18: Our results on transparent objects segmentation
dataset Trans10K [42]. The model is trained only on our GW-
Depth dataset. (b) & (c): visualized depth estimations and
glass segmentations. (d): detected glass line segments with
the top 16 confidence scores are displayed in red.

TABLE 12: Performance comparisons on the synthestic split
of the ClearGrasp dataset [11]. “Our GW-D” and “Our CG”
are our models without glass structure context trained on
the GW-Depth and ClearGrasp datasets, respectively. “SPF”
denotes the number of seconds taken by each method for
processing one image.

Method σ1↑ σ2↑ σ3↑ REL↓ RMS↓ Log10↓ SPF
CG [11] 0.6943 0.8917 0.9674 0.055 0.041 0.031 1.82

LIDF [12] 0.9479 0.9852 0.9967 0.017 0.012 0.009 0.09
Our GW-D 0.1353 0.2889 0.4543 0.4965 0.4839 0.4405 0.04

Our CG 0.9910 0.9991 0.9995 0.060 0.049 0.043 0.04

performances (the best accuracy under thresholds σ1, σ2, σ3).
Two visualized depths of our method on the ClearGrasp
datasets are shown in Fig. 19. This shows the reflection
context is also useful in scenes dominated by light refraction.

Limitations and future work. Our approach still has
some limitations. In most cases, the required context prior
knowledge is readily available. However, in situations where
strong light conditions make glass walls ambiguous, our
model may incorrectly predict glass walls in enclosed areas
where no glass is present. Fig. 20 illustrates this with two
examples from the NYU Depth V2 dataset. In the first row,
our model predicts reasonable depths for a glass structure
with clear lighting. In the second row, it incorrectly predicts

Inputs Our CG LIDF [12] GT

Fig. 19: Visualized depth comparison on the transparent
object dataset ClearGrasp [11]. Our model (“Our CG”) is
trained only with reflection context and without raw depths
as input. Both “Our CG” and “LIDF” contain visualized
depths and depth error maps (where darker colors indicate
larger errors). “GT” denotes the ground-truth depths.
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a window frame without glass as a glass wall. Additionally,
our model may treat reflections in mirrors as real scenes,
as shown in the last row of Fig. 20. These limitations arise
because the glass wall scenes in our dataset mainly consist
of transparent walls, which has an unbalanced distribution
in such cases. This is also a common problem for monocular
depth estimation, as the networks might overly rely on
the contextual information learned from specific datasets. It
highlights the need to improve dataset diversity and further
develop new methods to address depth estimation challenges
in scenes where depth cameras are unreliable.

To address the above limitations, we plan to capture
more diverse indoor scenes that contain both glass walls and
mirrors. To make the dataset distributed in a more balanced
way, we opt to also capture the common indoor scenes
without glass and mirror. To improve the capturing efficiency,
we plan to set up a sliding track to carry the depth camera,
which will enable us to save time by not having to frequently
attach and remove the opaque covers in areas where depth
cameras can be unreliable. Furthermore, to leverage existing
glass detection datasets, mirror segmentation datasets, and
emergent large models like CLIP [65], we plan to design a
model that can be pretrained on those datasets or distilled
from trained large models, which could potentially help
our method more robustly distinguish scenes where depth
cameras are unreliable.

6 CONCLUSION

We created an RGB-D dataset for glass walls and introduced
a dual-context embedded method for transparent glass wall
depth estimation. The dataset features real-world scenes
with detailed annotations, including depth maps, glass
segmentations, and glass line segments. Our network uses
glass structure context from top-scored line segments as prior
knowledge, constructing a local-to-structure attention map.
We also utilize reflection context by selecting depth-reliable
points based on variance between two estimated depth
maps, enhancing depth estimation in scenes with absent or
unclear glass structures. The reflection context is embedded
in point-to-global attention between depth-reliable point
feature vectors and global feature maps, resulting in a higher
resolution depth map. Our extensive experiments show the
effectiveness of this dual-context design.
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