97 research outputs found

    Local Probes for Quantum Hall Ferroelectrics and Nematics

    Full text link
    Two-dimensional multi-valley electronic systems in which the dispersion of individual pockets has low symmetry give rise to quantum Hall ferroelectric and nematic states in the presence of strong quantising magnetic fields. We investigate local signatures of these states arising near impurities that can be probed via Scanning Tunnelling Microscopy (STM) spectroscopy. For quantum Hall ferroelectrics, we demonstrate a direct relation between the dipole moment measured at impurity bound states and the ideal bulk dipole moment obtained from the modern theory of polarisation. We also study the many-body problem with a single impurity via exact diagonalization and find that near strong impurities non-trivial excitonic state can form with specific features that can be easily identified via STM spectroscopy.Comment: Main: 5 pages, 4 figures; Supplement: 9 pages, 4 figures; published versio

    Stability of fractionally dissipative 2D quasi-geostrophic equation with infinite delay

    Get PDF
    In this paper, fractionally dissipative 2D quasi-geostrophic equations with an external force containing infinite delay is considered in the space Hs with s ≥ 2 − 2α and α ∈ ( 1 2 , 1). First, we investigate the existence and regularity of solutions by Galerkin approximation and the energy method. The continuity of solutions with respect to initial data and the uniqueness of so lutions are also established. Then we prove the existence and uniqueness of a stationary solution by the Lax-Milgram theorem and the Schauder fixed point theorem. Using the classical Lyapunov method, the construction method of Lyapunov functionals and the Razumikhin-Lyapunov technique, we analyze the local stability of stationary solutions. Finally, the polynomial stability of stationary solutions is verified in a particular case of unbounded variable delay

    EDMAE: An Efficient Decoupled Masked Autoencoder for Standard View Identification in Pediatric Echocardiography

    Full text link
    This paper introduces the Efficient Decoupled Masked Autoencoder (EDMAE), a novel self-supervised method for recognizing standard views in pediatric echocardiography. EDMAE introduces a new proxy task based on the encoder-decoder structure. The EDMAE encoder is composed of a teacher and a student encoder. The teacher encoder extracts the potential representation of the masked image blocks, while the student encoder extracts the potential representation of the visible image blocks. The loss is calculated between the feature maps output by the two encoders to ensure consistency in the latent representations they extract. EDMAE uses pure convolution operations instead of the ViT structure in the MAE encoder. This improves training efficiency and convergence speed. EDMAE is pre-trained on a large-scale private dataset of pediatric echocardiography using self-supervised learning, and then fine-tuned for standard view recognition. The proposed method achieves high classification accuracy in 27 standard views of pediatric echocardiography. To further verify the effectiveness of the proposed method, the authors perform another downstream task of cardiac ultrasound segmentation on the public dataset CAMUS. The experimental results demonstrate that the proposed method outperforms some popular supervised and recent self-supervised methods, and is more competitive on different downstream tasks.Comment: 15 pages, 5 figures, 8 tables, Published in Biomedical Signal Processing and Contro

    Atrial Septal Defect Detection in Children Based on Ultrasound Video Using Multiple Instances Learning

    Full text link
    Purpose: Congenital heart defect (CHD) is the most common birth defect. Thoracic echocardiography (TTE) can provide sufficient cardiac structure information, evaluate hemodynamics and cardiac function, and is an effective method for atrial septal defect (ASD) examination. This paper aims to study a deep learning method based on cardiac ultrasound video to assist in ASD diagnosis. Materials and methods: We select two standard views of the atrial septum (subAS) and low parasternal four-compartment view (LPS4C) as the two views to identify ASD. We enlist data from 300 children patients as part of a double-blind experiment for five-fold cross-validation to verify the performance of our model. In addition, data from 30 children patients (15 positives and 15 negatives) are collected for clinician testing and compared to our model test results (these 30 samples do not participate in model training). We propose an echocardiography video-based atrial septal defect diagnosis system. In our model, we present a block random selection, maximal agreement decision and frame sampling strategy for training and testing respectively, resNet18 and r3D networks are used to extract the frame features and aggregate them to build a rich video-level representation. Results: We validate our model using our private dataset by five-cross validation. For ASD detection, we achieve 89.33 AUC, 84.95 accuracy, 85.70 sensitivity, 81.51 specificity and 81.99 F1 score. Conclusion: The proposed model is multiple instances learning-based deep learning model for video atrial septal defect detection which effectively improves ASD detection accuracy when compared to the performances of previous networks and clinical doctors
    • …
    corecore