21 research outputs found

    Impact of CO2 activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes

    Get PDF
    Antimony (Sb) has been regarded as one of the most promising anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) and attracted much attention in recent years. Alleviating the volumetric effect of Sb during charge and discharge processes is the key point to promote Sb-based anodes to practical applications. Carbon dioxide (CO2) activation is applied to improve the rate performance of the Sb/C nanohybrid anodes caused by the limited diffusion of Li/Na ions in excessive carbon components. Based on the reaction between CO2 and carbon, CO2 activation can not only reduce the excess carbon content of the Sb/C nanohybrid but also create abundant mesopores inside the carbon matrix, leading to enhanced rate performance. Additionally, CO2 activation is also a fast and facile method, which is perfectly suitable for the fabrication system we proposed. As a result, after CO2 activation, the average capacity of the Sb/C nanohybrid LIB anode is increased by about 18 times (from 9 mA h g−1 to 160 mA h g−1) at a current density of 3300 mA g−1. Moreover, the application of the CO2-activated Sb/C nanohybrid as a SIB anode is also demonstrated, showing good electrochemical performance

    State of the art of ultra-thin gold layers: formation fundamentals and applications

    No full text
    Fabrication of ultra-thin gold (Au) layers (UTGLs) has been regarded as the key technique to achieve applications with tunable optical response, flexible sensors and electronic devices. Various strategies have been developed to optimize the wetting process of Au, resulting in the formation of UTGLs at a minimum thickness. The related studies on UTGLs attracted huge attention in recent years. On the one hand, the growth processes of UTGLs on different substrates were in-depth probed by advanced in situ characterization techniques and the effects of optimization strategies on the growth of UTGLs were also revealed. On the other hand, based on the understanding of the growth behavior and the assistance of optimization strategies, various applications of UTGLs were realized based on optical/plasmon responses, surface-enhanced Raman scattering and as electrodes for various sensors and electronic devices, as well as being seed layers for thin film growth. In this focused review, both the fundamental and practical studies on UTGLs in the most recent years are elaborated in detail. The growth processes of UTGLs revealed by in situ characterization techniques, such as grazing-incidence small-angle X-ray scattering (GISAXS), as well as the state of the art of UTGL-based applications, are reviewed

    A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes

    No full text
    Since the commercialization of lithium-ion batteries (LIBs) in the early 1990s, tin (Sn), antimony (Sb), and germanium (Ge)-based anodes have attracted considerable research interest as promising candidates for next-generation LIBs due to their high theoretical capacities, suitable operating voltages, and natural abundance. Additionally, the awareness of limited global lithium sources promoted the renaissance of sodium-ion batteries (SIBs) in recent years. Sn, Sb, and Ge can electrochemically alloy with sodium and are regarded as promising anode candidates for high-performance SIBs. However, these alloying/dealloying anodes suffer severe volume expansion during lithiation or sodiation processes, which is one of the biggest obstacles toward practical applications. In order to solve this problem, several strategies are developed including reducing the absolute size of particles, creating interior void space, and introducing buffer media. After more than two decades' efforts, the electrochemical performance of Sn, Sb, and Ge-based anodes is significantly improved. Considerable studies about Sn, Sb, and Ge-based anodes are summarized in a chronicle perspective and the brief development histories of the three anodes are outlined. With this unique review, light will be shed on the future trends of the studies on the Sn, Sb, and Ge-based anodes for advanced rechargeable batteries

    Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS.

    No full text
    Extensive attention has focused on the structure optimization of perovskites, whereas rare research has mapped the structure heterogeneity within mixed hybrid perovskite films. Overlooked aspects include material and structure variations as a function of depth. These depth-dependent local structure heterogeneities dictate their long-term stabilities and efficiencies. Here, we use a nano-focused wide-angle X-ray scattering method for the mapping of film heterogeneities over several micrometers across lateral and vertical directions. The relative variations of characteristic perovskite peak positions show that the top film region bears the tensile strain. Through a texture orientation map of the perovskite (100) peak, we find that the perovskite grains deposited by sequential spray-coating grow along the vertical direction. Moreover, we investigate the moisture-induced degradation products in the perovskite film, and the underlying mechanism for its structure-dependent degradation. The moisture degradation along the lateral direction primarily initiates at the perovskite-air interface and grain boundaries. The tensile strain on the top surface has a profound influence on the moisture degradation

    In Situ Incorporation of Super-Small Metallic High Capacity Nanoparticles and Mesoporous Structures for High-Performance TiO2/SnO2/Sn/Carbon Nanohybrid Lithium-Ion Battery Anodes

    No full text
    TiO2 is a promising lithium-ion battery anode due to its good operation safety enabled by its voltage profile. However, the intrinsically low electronic/ionic conductivity and moderate reversible capacity compromise its potential for practical applications. It is proposed in this work to incorporate super-small sized metallic high capacity tin-based nanoparticles into TiO2/carbon nanohybrids, coupled with in situ generation of mesoporous structures. Difunctional methacrylate resin monomers are used as the solvent and carbon source, followed by carbonization and hydrofluoric (HF) etching treatment. The precursors of TiO2, tin-based component, and SiOx porogen agent are homogeneously integrated into the cross-linking network at a molecular level. High reversible capacities, excellent rate capability, and good capacity retention are achieved simultaneously due to synergistic effects from the tin-based component bearing high capacity and good electron conductivity, and mechanical buffer medium of the mesoporous structures. Reversible capacities of 452 mAh g(-1) are achieved after 400 cycles at 200 mA g(-1). High rate capacity of 131 mAh g(-1) is maintained at 5 A g(-1). The overall capacities are increased by more than 2 times compared with the capacities of the tin-free TiO2/C and pristine TiO2/SnO2/Sn/SiOx/C nanohybrids

    In Situ Study of FePt Nanoparticles‐Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films

    No full text
    The development of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles (NPs) by printing is a highly promising method for scalable and low-cost fabrication. During printing, the drying and arrangement kinetics of the DBC and magnetic NPs play an important role in the film formation concerning morphology and magnetic properties. In this study, the morphology evolution of ultrahigh molecular weight DBC polystyrene-block-poly(methyl methacrylate) and magnetic iron platinum (FePt) NPs is investigated with grazing-incidence small-angle X-ray scattering (GISAXS) in situ during printing. For comparison, a pure DBC film is printed without FePt NPs under the same conditions. The GISAXS data suggest that the addition of NPs accelerates the solvent evaporation, leading to a faster film formation of the hybrid film compared to the pure film. As the solvent is almost evaporated, a metastable state is observed in both films. Compared with the pure film, such a metastable state continues longer during the printing process of the hybrid film because of the presence of FePt NPs, which inhibits the reorganization of the DBC chains. Moreover, investigations of the field-dependent magnetization and temperature-dependent susceptibility indicate that the printed hybrid film is superparamagnetic, which makes this film class promising for magnetic sensors

    In Situ Study of FePt Nanoparticles‐Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films

    Get PDF
    The development of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles (NPs) by printing is a highly promising method for scalable and low‐cost fabrication. During printing, the drying and arrangement kinetics of the DBC and magnetic NPs play an important role in the film formation concerning morphology and magnetic properties. In this study, the morphology evolution of ultrahigh molecular weight DBC polystyrene‐block‐poly(methyl methacrylate) and magnetic iron platinum (FePt) NPs is investigated with grazing‐incidence small‐angle X‐ray scattering (GISAXS) in situ during printing. For comparison, a pure DBC film is printed without FePt NPs under the same conditions. The GISAXS data suggest that the addition of NPs accelerates the solvent evaporation, leading to a faster film formation of the hybrid film compared to the pure film. As the solvent is almost evaporated, a metastable state is observed in both films. Compared with the pure film, such a metastable state continues longer during the printing process of the hybrid film because of the presence of FePt NPs, which inhibits the reorganization of the DBC chains. Moreover, investigations of the field‐dependent magnetization and temperature‐dependent susceptibility indicate that the printed hybrid film is superparamagnetic, which makes this film class promising for magnetic sensors

    Correlating Optical Reflectance with Topology of Aluminum Nanocluster Layers Growing on Partially Conjugated Diblock Copolymer Templates

    No full text
    Large-scale fabrication of metal cluster layers for usage in sensor applications and photovoltaics is a huge challenge. Physical vapor deposition offers large-scale fabrication of metal cluster layers on templates and polymer surfaces. In the case of aluminum (Al), only little is known about the formation and interaction of Al clusters during sputter deposition. Complex polymer surface morphologies can tailor the deposited Al cluster layer. Here, a poly(methyl methacrylate)-block-poly(3-hexylthiophen-2,5-diyl) (PMMA-b-P3HT) diblock copolymer template is used to investigate the nanostructure formation of Al cluster layers on the different polymer domains and to compare it with the respective homopolymers PMMA and P3HT. The optical properties relevant for sensor applications are monitored with ultraviolet-visible (UV-vis) measurements during the sputter deposition. The formation of Al clusters is followed in situ with grazing-incidence small-angle X-ray scattering (GISAXS), and the chemical interaction is revealed by X-ray photoelectron spectroscopy (XPS). Furthermore, atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) yield topographical information about selective wetting of Al on the P3HT domains and embedding in the PMMA domains in the early stages, followed by four distinct growth stages describing the Al nanostructure formation
    corecore