187 research outputs found

    Efficiency Analysis and Comparison of Different Radon Progeny Measurement Methods

    Get PDF
    Radon exposure to the public contributes more than half of all the radiation doses caused by natural radiation; accurate measurement of radon progeny is quite essential for the dose evaluation of radon exposure in environment. For the purpose of establishing a radon progeny standard and controlling measurement quality of commercial devices, it is quite important to analyze the efficiency of different measurement methods and determine which would be the most appropriate for radon progeny measurements. Through theoretical analysis and experimental measurement, some commonly used measurement methods were compared in this study and the development trends of those methods were reviewed. Results show that for radon progeny measurement, the spectroscopic analysis method is better than the gross count method, while least-square calculation methods is better than traditional three-count or five-count method. Multiperiod counting of α plus β spectrum as well as using weighted least-square calculation method might be the best choice for accurate measurement on radon progeny in standard radon chamber when calibrating commercial radon progeny monitors

    Non-coding RNAs: The recently accentuated molecules in the regulation of cell autophagy for ovarian cancer pathogenesis and therapeutic response

    Get PDF
    Autophagy is a self-recycling and conserved process, in which the senescent cytoplasmic components are degraded in cells and then recycled to maintain homeostatic balance. Emerging evidence has suggested the involvement of autophagy in oncogenesis and progression of various cancers, such as ovarian cancer (OC). Meanwhile, the non-coding RNAs (ncRNAs) frequently regulate the mRNA transcription and other functional signaling pathways in cell autophagy, displaying promising roles in human cancer pathogenesis and therapeutic response. This article mainly reviews the cutting-edge research advances about the interactions between ncRNAs and autophagy in OC. This review not only summarizes the underlying mechanisms of dynamic ncRNA-autophagy association in OC, but also discusses their prognostic implications and therapeutic biomarkers. The aim of this review was to provide a more in-depth knowledge framework exploring the ncRNA-autophagy crosstalk and highlight the promising treatment strategies for OC patients

    Folate monoglutamate in cereal grains: Evaluation of extraction techniques and determination by LC-MS/MS

    Full text link
    Folates are essential micronutrients for human health. To determine the total folate content, the extraction and quantification of seven monoglutamate folate derivatives in cereals (maize, rice, and wheat) were optimised and validated in this study. Di-enzyme treatment with α-amylase and rat conjugase was proved ideal for folate extraction from the cereal grains. The quantification method by liquid chromatography-tandem mass spectrometry was validated based on its matrix effect, linearity, sensitivity, recovery, inter-day and intra-day precision. The limits of detection and quantification of folate derivatives ranged from 0.03–0.88 and 0.1–1.0 μg/100 g among the three cereal samples. The absolute recoveries of most folate derivatives were 72–96 % for these cereal samples, with the exception of dihydrofolate, tetrahydrofolate, and folic acid (44–65 %). The inter-day and intra-day precisions were < 12 % for the three cereals. Analysis of folate content and composition in several cereal grains showed that the total folate levels were approximately 26−37 μg/100 g, with 5-methyl-tetrahydrofolate and 5-methyl-tetrahydrofolate as the dominant. MeFox, an oxidation product of 5-methyltetrahydrofolate, was detected at concentrations 20–39-fold higher than those of total folates in rice and wheat grains. This validated method is an efficient approach for folate determination in cereal crops

    Anisotropic in-plane heat transport of Kitaev magnet Na2_2Co2_2TeO6_6

    Full text link
    We report a study on low-temperature heat transport of Kitaev magnet Na2_2Co2_2TeO6_6, with the heat current and magnetic fields along the honeycomb spin layer (the abab plane). The zero-field thermal conductivity of κxxa\kappa^a_{xx} and κxxa\kappa^{a*}_{xx} display similar temperature dependence and small difference in their magnitudes; whereas, their magnetic field (parallel to the heat current) dependence are quite different and are related to the field-induced magnetic transitions. The κxxa(B)\kappa^a_{xx}(B) data for BaB \parallel a at very low temperatures have an anomaly at 10.25--10.5 T, which reveals an unexplored magnetic transition. The planar thermal Hall conductivity κxya\kappa^a_{xy} and κxya\kappa^{a*}_{xy} show very weak signals at low fields and rather large values with sign change at high fields. This may point to a possible magnetic structure transition or the change of the magnon band topology that induces a radical change of magnon Berry curvature distribution before entering the spin polarized state. These results put clear constraints on the high-field phase and the theoretical models for Na2_2Co2_2TeO6_6.Comment: 7 pages, 4 figure

    Characterizing corn-straw-degrading actinomycetes and evaluating application efficiency in straw-returning experiments

    Get PDF
    Corn straw is an abundant lignocellulose resource and by-product of agricultural production. With the continuous increase in agricultural development, the output of corn straw is also increasing significantly. However, the inappropriate disposal of straw results in wasting of resources, and also causes a serious ecological crisis. Screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. For this purpose, our research group isolated three actinomycete strains with efficient lignocellulose degradation ability from soil in the cold region of China: Streptomyces sp. G1T, Streptomyces sp. G2T and Streptomyces sp. G3T. Their microbial properties and taxonomic status were assessed to improve our understanding of these strains. The three strains showed typical characteristics of the genus Streptomyces, and likely represent three different species. Genome functional annotation indicated that most of their genes were related to functions like carbohydrate transport and metabolism. In addition, a similar phenomenon also appeared in the COG and CAZyme analyses, with a large number of genes encoding carbohydrate-related hydrolases, such as cellulase, glycosidase and endoglucanase, which could effectively destroy the structure of lignocellulose in corn straw. This unambiguously demonstrated the potential of the three microorganisms to hydrolyze macromolecular polysaccharides at the molecular level. In addition, in the straw-returning test, the decomposing consortium composed of the three Streptomyces isolates (G123) effectively destroyed the recalcitrant bonds between the various components of straw, and significantly reduced the content of active components in corn straw. Furthermore, microbial diversity analysis indicated that the relative abundance of Proteobacteria, reportedly associated with soil antibiotic resistance and antibiotic degradation, was significantly improved with straw returning at both tested time points. The microbial diversity of each treatment was also dramatically changed by supplementing with G123. Taken together, G123 has important biological potential and should be further studied, which will provide new insights and strategies for appropriate treatment of corn straw

    The therapeutic role and potential mechanism of EGCG in obesity-related precocious puberty as determined by integrated metabolomics and network pharmacology

    Get PDF
    Objective(-)-Epigallocatechin-3-gallate (EGCG) has preventive effects on obesity-related precocious puberty, but its underlying mechanism remains unclear. The aim of this study was to integrate metabolomics and network pharmacology to reveal the mechanism of EGCG in the prevention of obesity-related precocious puberty.Materials and methodsA high-performance liquid chromatography-electrospray ionization ion-trap tandem mass spectrometry (LC-ESI-MS/MS) was used to analyze the impact of EGCG on serum metabolomics and associated metabolic pathways in a randomized controlled trial. Twelve weeks of EGCG capsules were given to obese girls in this trail. Additionally, the targets and pathways of EGCG in preventing obesity-related precocious puberty network pharmacology were predicted using network pharmacology. Finally, the mechanism of EGCG prevention of obesity-related precocious puberty was elucidated through integrated metabolomics and network pharmacology.ResultsSerum metabolomics screened 234 endogenous differential metabolites, and network pharmacology identified a total of 153 common targets. These metabolites and targets mainly enrichment pathways involving endocrine-related pathways (estrogen signaling pathway, insulin resistance, and insulin secretion), and signal transduction (PI3K-Akt, MAPK, and Jak-STAT signaling pathways). The integrated metabolomics and network pharmacology indicated that AKT1, EGFR, ESR1, STAT3, IGF1, and MAPK1 may be key targets for EGCG in preventing obesity-related precocious puberty.ConclusionEGCG may contribute to preventing obesity-related precocious puberty through targets such as AKT1, EGFR, ESR1, STAT3, IGF1, and MAPK1 and multiple signaling pathways, including the estrogen, PI3K-Akt, MAPK, and Jak-STAT pathways. This study provided a theoretical foundation for future research

    [Fe(CN)6] vacancy-boosting oxygen evolution activity of Co-based Prussian blue analogues for hybrid sodium-air battery

    Get PDF
    Prussian blue analogues (PBAs) have emerged as efficient catalysts for oxygen evolution reaction (OER) due to their porous structure with well-dispersed active sites. However, Co-based PBA (Co-PBA) electrocatalysts are characterized by moderate OER kinetics. In this study, we developed a facile high-yield strategy to fabricate defective Co-PBA (D-Co-PBA) with [Fe(CN)6] vacancies and exposed Co (III) active sites by post-oxidation treatment of the pristine Co-PBA with aqueous H2O2. Rietveld refinement results show that the lattice parameter (a) and unit-cell volume (V) of D-Co-PBA are smaller than those of the pristine Co-PBA, thereby confirming the generation of [Fe(CN)6] vacancies. Density functional theory calculations reveal that the [Fe(CN)6] vacancy can effectively regulate the electronic structure of D-Co-PBA; this condition reduces the reaction barrier of the rate-determining step toward OER. In OER, the D-Co-PBA catalyst achieves a lower overpotential of 400 mV at a current density of 10 mA cm−2, which is superior to that of Ir/C (430 mV) and Co-PBA (450 mV). A hybrid sodium-air battery assembled with Pt/C and D-Co-PBA catalysts displays a discharge voltage of 2.75 V, an ultralow charging–discharging gap of 0.15 V, and a round-trip efficiency of 94.83% on the 1000th cycle at the current density of 0.01 mA cm-2. This study is highly promising for large-scale production of affordable and effective PBA-based materials with desirable OER activity for metal-air batteries and water-alkali electrolyzers, thus helping achieve the goal of sustainability

    Dental resin monomer enables unique NbO2/carbon lithium‐ion battery negative electrode with exceptional performance

    Get PDF
    Niobium dioxide (NbO2) features a high theoretical capacity and an outstanding electron conductivity, which makes it a promising alternative to the commercial graphite negative electrode. However, studies on NbO2 based lithium-ion battery negative electrodes have been rarely reported. In the present work, NbO2 nanoparticles homogeneously embedded in a carbon matrix are synthesized through calcination using a dental resin monomer (bisphenol A glycidyl dimethacrylate, Bis-GMA) as the solvent and a carbon source and niobium ethoxide (NbETO) as the precursor. It is revealed that a low Bis-GMA/NbETO mass ratio (from 1:1 to 1:2) enables the conversion of Nb (V) to Nb (IV) due to increased porosity induced by an alcoholysis reaction between the NbETO and Bis-GMA. The as-prepared NbO2/carbon nanohybrid delivers a reversible capacity of 225 mAh g−1 after 500 cycles at a 1 C rate with a Coulombic efficiency of more than 99.4% in the cycles. Various experimental and theoretical approaches including solid state nuclear magnetic resonance, ex situ X-ray diffraction, differential electrochemical mass spectrometry, and density functional theory are utilized to understand the fundamental lithiation/delithiation mechanisms of the NbO2/carbon nanohybrid. The results suggest that the NbO2/carbon nanohybrid bearing high capacity, long cycle life, and low gas evolution is promising for lithium storage applications
    corecore