34 research outputs found

    Biofilm microbial community structure in an urban lake utilizing reclaimed water

    Get PDF
    Analyses of biofilm community structure may potentially be employed for aquatic ecosystem health assessment, however, to date, biofilm diversity within urban lakes using reclaimed water has not been examined. Accordingly, the microbial community diversity and structure of biofilms from the surface of multiple matrices with varying roughness (0.1, 1.0 and 10.0 μm) were characterized using a suite of molecular techniques including scanning electron microscopy, genetic fingerprinting and phospholipid-derived fatty acid analyses. Samples were largely comprised of inorganic particles, algae and numerous bacterial species; 12 phospholipid-derived fatty acid (PLFA) types were identified, significantly less than typically associated with sewage. Both growth matrix surface roughness and biofilm growth phase were shown to concur with significantly different microbial quantity and community structures. Gram-negative bacteria bacillus i15:03OH and 18:0 were the dominant bacterial genera, collectively comprising ≈75 % of identified PLFA species content. Calculated species diversity (H) and species dominance (D) exhibited identical correlational patterns with measured water quality parameters; significant positive correlations were exhibited with respect to Mg2, while significant negative correlations were found for NO3, TP, BOD, COD, SP, PO4, SO4 and pH. Results indicate that analyses of biofilm formation and structure could be effectively used to undertake integrated assessments of the ecological health of lake systems using reclaimed water. Further work is required to elucidate the optimum conditions for sample collection and analytical interpretation

    Biofilm growth kinetics and nutrient (N/P) adsorption in an urban lake using reclaimed water: A quantitative baseline for ecological health assessment

    Get PDF
    Reclaimed wastewater reuse represents an effective method for partial resolution of increasing urban water shortages; however, reclaimed water may be characterized by significant contaminant loading, potentially affecting receiving ecosystem (and potentially human) health. The current study examined biofilm growth and nutrient adsorption in Olympic Lake (Beijing), the largest artificial urban lake in the world supplied exclusively by reclaimed wastewater. Findings indicate that solid particulate, extracellular polymeric substance (EPS) and metal oxide (Al, Fe, Mn) constituent masses adhere to a bacterial growth curve during biofilm formation and growth. Peak values were observed after ≈30 days, arrived at dynamic stability after ≈50days and were affected by growth matrix surface roughness. These findings may be used to inform biofilm cultivation times for future biomonitoring. Increased growth matrix surface roughness (10.0μm) was associated with more rapid biofilm growth and therefore an increased sensitivity to ecological variation in reclaimed water. Reclaimed water was found to significantly inhibit biofilm nutrient adsorption when compared with a “natural water” background, with elevated levels of metal oxides (Al, Fe, and Mn) and EPS representing the key substances actively influencing biofilm nutrient adsorption in reclaimed water. Results from the current study may be used to provide a quantitative baseline for future studies seeking to assess ecosystem health via monitoring of biofilms in the presence of reclaimed water through an improved quantitative understanding of biofilm kinetics in these conditions

    Cross-View Hierarchy Network for Stereo Image Super-Resolution

    Full text link
    Stereo image super-resolution aims to improve the quality of high-resolution stereo image pairs by exploiting complementary information across views. To attain superior performance, many methods have prioritized designing complex modules to fuse similar information across views, yet overlooking the importance of intra-view information for high-resolution reconstruction. It also leads to problems of wrong texture in recovered images. To address this issue, we explore the interdependencies between various hierarchies from intra-view and propose a novel method, named Cross-View-Hierarchy Network for Stereo Image Super-Resolution (CVHSSR). Specifically, we design a cross-hierarchy information mining block (CHIMB) that leverages channel attention and large kernel convolution attention to extract both global and local features from the intra-view, enabling the efficient restoration of accurate texture details. Additionally, a cross-view interaction module (CVIM) is proposed to fuse similar features from different views by utilizing cross-view attention mechanisms, effectively adapting to the binocular scene. Extensive experiments demonstrate the effectiveness of our method. CVHSSR achieves the best stereo image super-resolution performance than other state-of-the-art methods while using fewer parameters. The source code and pre-trained models are available at https://github.com/AlexZou14/CVHSSR.Comment: 10 pages, 7 figures, CVPRW, NTIRE202

    The tumor suppressive role of CAMK2N1 in castration-resistant prostate cancer.

    Get PDF
    Prostate cancer at advanced stages including metastatic and castration-resistant cancer remains incurable due to the lack of effective therapies. The CAMK2N1 gene, cloned and characterized as an inhibitor of CaMKII (calcium/calmodulin-dependent protein kinase II), has been shown to affect tumorigenesis and tumor growth. However, it is still unknown whether CAMK2N1 plays a role in prostate cancer development. We first examined the protein and mRNA levels of CAMK2N1 and observed a significant decrease in human prostate cancers comparing to normal prostate tissues. Re-expression of CAMK2N1 in prostate cancer cells reduced cellular proliferation, arrested cells in G0/G1 phases, and induced apoptotic cell death accompanied by down-regulation of IGF-1, ErbB2, and VEGF downstream kinases PI3K/AKT, as well as the MEK/ERK-mediated signaling pathways. Conversely, knockdown of CAMK2N1 had a significant opposite effects on these phenotypes. Our analyses suggest that CAMK2N1 plays a tumor suppressive role in prostate cancer cells. Reduced CAMK2N1 expression correlates to human prostate cancer progression and predicts poor clinical outcome, indicating that CAMK2N1 may serve as a biomarker. The inhibition of tumor growth by expressing CAMK2N1 established a role of CAMK2N1 as a therapeutic target

    CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling.

    Get PDF
    Castration resistance is a major obstacle to hormonal therapy for prostate cancer patients. Although androgen independence of prostate cancer growth is a known contributing factor to endocrine resistance, the mechanism of androgen receptor deregulation in endocrine resistance is still poorly understood. Herein, the CAMK2N1 was shown to contribute to the human prostate cancer cell growth and survival through AR-dependent signaling. Reduced expression of CAMK2N1 was correlated to recurrence-free survival of prostate cancer patients with high levels of AR expression in their tumor. CAMK2N1 and AR signaling form an auto-regulatory negative feedback loop: CAMK2N1 expression was down-regulated by AR activation; while CAMK2N1 inhibited AR expression and transactivation through CAMKII and AKT pathways. Knockdown of CAMK2N1 in prostate cancer cells alleviated Casodex inhibition of cell growth, while re-expression of CAMK2N1 in castration-resistant cells sensitized the cells to Casodex treatment. Taken together, our findings suggest that CAMK2N1 plays a tumor suppressive role and serves as a crucial determinant of the resistance of prostate cancer to endocrine therapies

    Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal-Organic Framework Films towards Directional Charge Transport

    Get PDF
    The development of layer-oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs) enables an access to direct charge transport, dial-in lateral/vertical electronic devices and unveil transport mechanisms, but remains a significant synthetic challenge. Here we report the novel synthesis of metal-phthalocyanine-based p-type semiconducting 2D c-MOF films (Cu2[PcM-O8], M=Cu or Fe) with an unprecedented edge-on layer-orientation at the air/water interface. The edge-on structure for-mation is guided by the pre-organization of metal-phthalocyanine ligands, whose basal plane is perpendicular to the water surface due to their π-π interaction and hydrophobicity. Benefiting from the unique layer orientation, we are able to investigate the lateral and vertical conductivities by DC methods, and thus demonstrate an anisotropic charge transport in the resulting Cu2[PcCu-O8] film. The directional conductivity studies combined with theoretical calculation identify that the intrinsic conductivity is dominated by charge transfer along the interlayer pathway. Moreover, a macroscopic (cm2-size) Hall-effect measurement reveals a Hall mobility of ~4.4 cm2 V-1 s-1 for the obtained Cu2[PcCu-O8] film. The orientation control in semiconducting 2D c-MOFs will enable the develop-ment of various optoelectronic applications and the exploration of unique transport properties

    Influence of Load Conditions on the Propeller Wake Evolution

    No full text
    The present work presents numerical research on the wake flows behind a propeller operating under three advance coefficients. Large eddy simulations are adopted to obtain the viscous flow information behind the propeller. In particular, the study highlights the comparison of the evolution characteristics and the flow physics within the propeller wakes with three advance coefficients. The predicted global force and moment coefficients and phase-average statistics of streamwise velocity agree well with the available experimental data. Compared to all other flow structures in the wake, the tip vortices are found to play the most significant role according to the results. During the pairing process of adjacent tip vortices, the tip vortices diffuse circumferentially, leading to enhanced mutual-induction effects. When the advance coefficient is low, the wake becomes distorted, and the pairing process takes place in the middle region of the flow field. As a result of their unstable motion, the four tip vortices generated by the propeller cannot be distinguished individually in the far field. Instead, they break down into smaller vortices and tend to distribute themselves uniformly in the azimuthal direction. The increase in the advance coefficient delays the pairing process. This study offers valuable insights for the design and optimization of marine propellers

    Design Optimization of a Mooring System for an Offshore Aquaculture Platform

    No full text
    In the present paper, the mooring system of an offshore aquaculture platform is designed and optimized, applying a shallow water mooring system design methodology which combines the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and the cable–platform coupled model. One mooring design is first given using the proposed methodology. Two reference mooring systems are modified based on an NSGA-II design, and AIP criteria and expertise. The hydrodynamic performance of the offshore aquaculture platform with these three mooring systems is compared via use of a potential flow time–domain numerical simulation. A physical model-scale experiment is carried out to validate the numerical coupled model. Both numerical and experimental results confirm the effectiveness of present model. The comparative analysis shows that the mooring system designed using NSGA-II can provide a relative radical solution compared to the other two mooring designs when considering a limited budget
    corecore