1,983 research outputs found

    Robust nonadiabatic geometric quantum computation by dynamical correction

    Full text link
    Besides the intrinsic noise resilience property, nonadiabatic geometric phases are of the fast evolution nature, and thus can naturally be used in constructing quantum gates with excellent performance, i.e., the so-called nonadiabatic geometric quantum computation (NGQC). However, previous single-loop NGQC schemes are sensitive to the operational control error, i.e., the XX error, due to the limitations of the implementation. Here, we propose a robust scheme for NGQC combining with the dynamical correction technique, which still uses only simplified pulses, and thus being experimental friendly. We numerically show that our scheme can greatly improve the gate robustness in previous protocols, retaining the intrinsic merit of geometric phases. Furthermore, to fight against the dephasing noise, due to the ZZ error, we can incorporate the decoherence-free subspace encoding strategy. In this way, our scheme can be robust against both types of errors. Finally, we also propose how to implement the scheme with encoding on superconducting quantum circuits with experimentally demonstrated technology. Therefore, due to the intrinsic robustness, our scheme provides a promising alternation for the future scalable fault-tolerant quantum computation.Comment: 6 pages, 5 figure

    Time-optimal universal quantum gates on superconducting circuits

    Full text link
    Decoherence is inevitable when manipulating quantum systems. It decreases the quality of quantum manipulations and thus is one of the main obstacles for large-scale quantum computation, where high-fidelity quantum gates are needed. Generally, the longer a gate operation is, the more decoherence-induced gate infidelity will be. Therefore, how to shorten the gate time becomes an urgent problem to be solved. To this end, time-optimal control based on solving the quantum brachistochrone equation is a straightforward solution. Here, based on time-optimal control, we propose a scheme to realize universal quantum gates on superconducting qubits in a two-dimensional square lattice configuration, and the two-qubit gate fidelity approaches 99.9\%. Meanwhile, we can further accelerate the Z-axis gate considerably by adjusting the detuning of the external driving. Finally, in order to reduce the influence of the dephasing error, decoherence-free subspace encoding is also incorporated in our physical implementation. Therefore, we present a fast quantum scheme which is promising for large-scale quantum computation.Comment: v2 accepte

    Recent Advances in Molecular Imaging

    Get PDF

    Study of an Improved Fuzzy Direct Torque Control of Induction Motor

    Get PDF
    The conventional direct torque control will inevitably produce torque ripple because of its way of flux estimates. For the purpose of handling this problem, a new control strategy was presented in this paper. This strategy combined subdivides control with voltage vector and fuzzy logic control in traditional direct torque control. In this model, the fuzzy logic combined the phase angle of the flux, the flux error and torque error as fuzzy variables and classified these fuzzy variables, in order to optimize the choice of voltage space vector, and the same time the traditional PID regulator is replaced by a fuzzy regulator. Simulation results show that, a great improvement torque responses , a great reduction of torque ripples is achieved and the strategy has a better dynamic and steady performance, especially in low-speed area
    • …
    corecore