64 research outputs found

    Resistance of Renal Cell Carcinoma to Sorafenib Is Mediated by Potentially Reversible Gene Expression

    Get PDF
    Purpose: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. Experimental Design: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naΓ―ve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. Results: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. Conclusions: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment

    Giant breast tumors: Surgical management of phyllodes tumors, potential for reconstructive surgery and a review of literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phyllodes tumors are biphasic fibroepithelial neoplasms of the breast. While the surgical management of these relatively uncommon tumors has been addressed in the literature, few reports have commented on the surgical approach to tumors greater than ten centimeters in diameter – the giant phyllodes tumor.</p> <p>Case presentation</p> <p>We report two cases of giant breast tumors and discuss the techniques utilized for pre-operative diagnosis, tumor removal, and breast reconstruction. A review of the literature on the surgical management of phyllodes tumors was performed.</p> <p>Conclusion</p> <p>Management of the giant phyllodes tumor presents the surgeon with unique challenges. The majority of these tumors can be managed by simple mastectomy. Axillary lymph node metastasis is rare, and dissection should be limited to patients with pathologic evidence of tumor in the lymph nodes.</p

    Genetic Incorporation of Human Metallothionein into the Adenovirus Protein IX for Non-Invasive SPECT Imaging

    Get PDF
    As the limits of existing treatments for cancer are recognized, clearly novel therapies must be considered for successful treatment; cancer therapy using adenovirus vectors is a promising strategy. However tracking the biodistribution of adenovirus vectors in vivo is limited to invasive procedures such as biopsies, which are error prone, non-quantitative, and do not give a full representation of the pharmacokinetics involved. Current non-invasive imaging strategies using reporter gene expression have been applied to analyze adenoviral vectors. The major drawback to approaches that tag viruses with reporter genes is that these systems require initial viral infection and subsequent cellular expression of a reporter gene to allow non-invasive imaging. As an alternative to conventional vector detection techniques, we developed a specific genetic labeling system whereby an adenoviral vector incorporates a fusion between capsid protein IX and human metallothionein. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional metallothionein (MT) as a component of their capsid surface. We demonstrate the feasibility of 99mTc binding in vitro to the pIX-MT fusion on the capsid of adenovirus virions using a simple transchelation reaction. SPECT imaging of a mouse after administration of a 99mTc-radiolabeled virus showed clear localization of radioactivity to the liver. This result strongly supports imaging using pIX-MT, visualizing the normal biodistribution of Ad primarily to the liver upon injection into mice. The ability we have developed to view real-time biodistribution in their physiological milieu represents a significant tool to study adenovirus biology in vivo

    Broadening of Neutralization Activity to Directly Block a Dominant Antibody-Driven SARS-Coronavirus Evolution Pathway

    Get PDF
    Phylogenetic analyses have provided strong evidence that amino acid changes in spike (S) protein of animal and human SARS coronaviruses (SARS-CoVs) during and between two zoonotic transfers (2002/03 and 2003/04) are the result of positive selection. While several studies support that some amino acid changes between animal and human viruses are the result of inter-species adaptation, the role of neutralizing antibodies (nAbs) in driving SARS-CoV evolution, particularly during intra-species transmission, is unknown. A detailed examination of SARS-CoV infected animal and human convalescent sera could provide evidence of nAb pressure which, if found, may lead to strategies to effectively block virus evolution pathways by broadening the activity of nAbs. Here we show, by focusing on a dominant neutralization epitope, that contemporaneous- and cross-strain nAb responses against SARS-CoV spike protein exist during natural infection. In vitro immune pressure on this epitope using 2002/03 strain-specific nAb 80R recapitulated a dominant escape mutation that was present in all 2003/04 animal and human viruses. Strategies to block this nAb escape/naturally occurring evolution pathway by generating broad nAbs (BnAbs) with activity against 80R escape mutants and both 2002/03 and 2003/04 strains were explored. Structure-based amino acid changes in an activation-induced cytidine deaminase (AID) β€œhot spot” in a light chain CDR (complementarity determining region) alone, introduced through shuffling of naturally occurring non-immune human VL chain repertoire or by targeted mutagenesis, were successful in generating these BnAbs. These results demonstrate that nAb-mediated immune pressure is likely a driving force for positive selection during intra-species transmission of SARS-CoV. Somatic hypermutation (SHM) of a single VL CDR can markedly broaden the activity of a strain-specific nAb. The strategies investigated in this study, in particular the use of structural information in combination of chain-shuffling as well as hot-spot CDR mutagenesis, can be exploited to broaden neutralization activity, to improve anti-viral nAb therapies, and directly manipulate virus evolution

    The Susceptibility of Trypanosomatid Pathogens to PI3/mTOR Kinase Inhibitors Affords a New Opportunity for Drug Repurposing

    Get PDF
    In our study we describe the potency of established phosphoinositide-3-kinase (PI3K) and mammalian Target of Rapamycin (mTOR) kinase inhibitors against three trypanosomatid parasites: Trypanosoma brucei, T. cruzi, and Leishmania sp., which are the causative agents for African sleeping sickness, Chagas disease, and leishmaniases, respectively. We noted that these parasites and humans express similar kinase enzymes. Since these similar human targets have been pursued by the drug industry for many years in the discovery of cellular growth and proliferation inhibitors, compounds developed as human anti-cancer agents should also have effect on inhibiting growth and proliferation of the parasites. With that in mind, we selected eight established PI3K and mTOR inhibitors for profiling against these pathogens. Among these inhibitors is an advanced clinical candidate against cancer, NVP-BEZ235, which we demonstrate to be a highly potent trypanocide in parasite cultures, and in a mouse model of T. brucei infection. Additionally, we describe observations of these inhibitors' effects on parasite growth and other cellular characteristics

    Identification of Lysine 37 of Histone H2B as a Novel Site of Methylation

    Get PDF
    Recent technological advancements have allowed for highly-sophisticated mass spectrometry-based studies of the histone code, which predicts that combinations of post-translational modifications (PTMs) on histone proteins result in defined biological outcomes mediated by effector proteins that recognize such marks. While significant progress has been made in the identification and characterization of histone PTMs, a full appreciation of the complexity of the histone code will require a complete understanding of all the modifications that putatively contribute to it. Here, using the top-down mass spectrometry approach for identifying PTMs on full-length histones, we report that lysine 37 of histone H2B is dimethylated in the budding yeast Saccharomyces cerevisiae. By generating a modification-specific antibody and yeast strains that harbor mutations in the putative site of methylation, we provide evidence that this mark exist in vivo. Importantly, we show that this lysine residue is highly conserved through evolution, and provide evidence that this methylation event also occurs in higher eukaryotes. By identifying a novel site of histone methylation, this study adds to our overall understanding of the complex number of histone modifications that contribute to chromatin function

    Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer.

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance

    Bone mineral density and leg muscle strength in young Caucasian, Hispanic, and Asian women.

    No full text
    Differences in bone mineral density (BMD) of ethnically diverse populations are usually attributed to anthropometric characteristics, but may also be due to life style or diet. We studied healthy young sedentary women with Asian (ASN, n=40), Hispanic (HIS, n=39), or Caucasian (CAU, n=36) backgrounds. Body composition and regional BMD were measured by dual-energy X-ray absorptiometry (Hologic) or PIXI (Lunar GE) for the heel and wrist). Leg strength was quantified with a leg press and dietary calcium was estimated with 3-d diet records. CAU were taller than HIS and ASN (p&lt;0.01). ASN had lower body weights, fat mass, lean body mass, and leg strength than HIS or CAU (p&lt;0.01). Differences in BMD among groups were not eliminated by adjusting for body weight and height at the arm, trochanter, femoral neck, and total hip where BMD values remained lower in the ASN than in HIS or CAU (p&lt;0.01). Conversely, adjusted BMD at the wrist was 7.3% higher in ASN and 8.3% higher in HIS and at the heel, 7.3% higher in ASN and 7.0% higher in HIS than in CAU (p&lt;0.05). Leg strength was a significant predictor of BMD in the hip in CAU (R=0.53, p=0.004), in the hip with dietary calcium in ASN (R=0.65, p=0.02), and in the heel with height in HIS (R=0.57, p=0.03). We conclude that significant factors underlying BMD in ethnically diverse young women vary as a function of ethnicity and include leg strength and dietary calcium as well as anthropometric characteristics
    • …
    corecore