190 research outputs found

    A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice

    Get PDF
    The transient assay system based on mesophyll or cultured cell-derived protoplasts has been exploited in several plant species and has become a powerful tool for rapid gene functional analysis and biochemical manipulations. However, the system has not been widely used in rice owing to the difficulties in large-scale isolation of viable rice protoplasts from leaves or suspension-cultured cells. Here, we describe a significantly improved method to isolate a large number of protoplasts from stem and sheath tissues of both young and mature plants. High-level coexpression of multiple constructs and efficient suppression of exogenous and endogenous genes were observed in the stem- and sheath-derived protoplasts. A transient green fluorescent protein and luciferase-based reporter system for defence-related genes expression analysis has been established, which is useful for screening and characterizing genes involved in rice defence signalling pathways. Furthermore, a protoplast-based bimolecular fluorescence complementation (BiFC) system for the detection of protein–protein interactions in living rice cells was developed. The YFP complementation of two split-YFP halves mediated by homodimerization of the GUS and SPIN1, a cell-death related protein, was observed in transfected protoplasts. In combination with genetic, genomic and proteomic approaches, the established versatile protoplast transient assay system will facilitate large-scale functional analysis of defence-related genes in rice

    Three-dimensional resolution-enhancement divided aperture correlation-differential confocal microscopy with nanometer axial focusing capability

    Get PDF
    Divided aperture confocal microscopy (DACM) provides an improved imaging depth, imaging contrast, and working distance at the expense of spatial resolution. Here, we present a new method-divided aperture correlation-differential confocal microscopy (DACDCM) to improve the DACM resolution and the focusing capability, without changing the DACM configuration. DACDCM divides the DACM image spot into two round regions symmetrical about the optical axis. Then the light intensity signals received simultaneously from two round regions by a charge-coupled device (CCD) are processed by correlation manipulation and differential subtraction to improve the DACM spatial resolution and axial focusing capability, respectively. Theoretical analysis and preliminary experiments indicate that, for the excitation wavelength of λ = 632.8 nm, numerical aperture NA = 0.8, and normalized offset vM = 3.2 of the two regions, the DACDCM resolution is improved by 32.5% and 43.1% in the x and z directions, simultaneously, compared with that of the DACM. The axial focusing resolution used for the sample surface profile imaging was also significantly improved to 2 nm

    Editorial: Epidemiology and clinical researches on neuropsychiatric disorders in aging

    Get PDF
     With the rising aging population in a global range, related neuropsychiatric disorders such as depression and dementia, have emerged and caused a tremendous disease burden. Over the past decades, many risk factors have been identified (1–12), and advances have been made in developing prevention and intervention strategies. However, there still exist challenges to be addressed. These challenges include but are not limited to early detection and prediction of neuropsychiatric disorders, comorbidities of both neuropsychiatric and non-neuropsychiatric aspects, identifying novel indicators for disease progression and prognosis, as well as investigating potential mediating mechanisms. Facing unprecedented challenges, we launched this Research Topic to promote healthy aging and longevity from the neuropsychiatric perspective, via collaboration from a number of professional disciplines. </p

    Variations in the reproductive strategies of three populations of Phrynocephalus helioscopus in China

    Get PDF
    Background Egg size and clutch size are key life history traits. During the breeding period, it is possible for females to increase their reproductive output either by increasing the number of eggs if the optimal egg size (OES) is maintained, or by increasing the allocation of energy to each egg. However, the strategies adopted are often influenced by animals’ morphology and environment. Methods Here, we examined variation in female morphological and reproductive traits, tested for trade-offs between egg size and clutch size, and evaluated the relationship between egg size and female morphology in three populations of Phrynocephalus helioscopus. Results Female body size, egg size, and clutch size were larger in the Yi Ning (YN) and Fu Yun (FY) populations than in the Bei Tun (BT) population (the FY and YN populations laid more, and rounder eggs). Egg size was independent of female body size in two populations (BT and FY), even though both populations had an egg-size/clutch size trade-off. In the YN population, egg size and clutch size were independent, but egg size was correlated with female body size, consistent with the hypothesis of morphological constraint. Conclusions Our study found geographical variation in body size and reproductive strategies of P. helioscopus. Egg size was correlated with morphology in the larger-bodied females of the YN population, but not in the smaller-bodied females of the BT population, illustrating that constraints on female body size and egg size are not consistent between populations

    Factors explaining the gender disparity in lipid-lowering treatment goal attainment rate in Chinese patients with statin therapy

    Full text link
    Background: The lipid-lowering treatment goal attainment rate is lower for women than for men among Chinese patients, but the reasons for this disparity have not been fully explored yet. Objectives: To elucidate the potential factors and the significance of their contributions towards the observed discrepancy in lipid-lowering treatment goal attainment rates between Chinese women and men. Methods: We used data from 1808 patients from 21 tertiary and 6 secondary hospitals in China who received and maintained statin therapy treatment for at least 2 months. Lipid-lowering treatment goal attainment was defined as low-density lipoprotein cholesterol (LDL-C) reaching the treatment targets recommended by the Chinese Guidelines on Prevention and Control of Dyslipidemia in Adults. Logistic Regression was used to explore possible factors associated with gender disparity in goal attainment rates, and to what extent each factor contributes. Results: A total of 674 women and 1134 men were enrolled in the study. Women had a significantly lower LDL-C goal attainment rate than that of men (46.0% vs 53.8%, P = 0.002), particularly in high and very high CVD risk groups. Among high and very high risk patients, approximately 35%, 7%, 5%, and 5% of gender disparity in LDL-C goal attainment rate was attributable to the gender difference in baseline LDL-C level, cardiovascular co-morbidities and associated risk factors, socioeconomic status, and the dosage of statin treatment, respectively. Approximately 50% of the gender disparity remained unexplained by these factors. Conclusions: Although nearly half of the gender disparity in lipid-lowering treatment goal attainment rate can be explained by the gender differences in baseline lipid level, socioeconomic status, cardiovascular co-morbidities and associated risk factors, and the dosage of statin in high and very high CVD risk patients, the other half of the gender disparity remains unexplained and requires further study to fully understand what other factors are at play.Biochemistry &amp; Molecular BiologyNutrition &amp; DieteticsSCI(E)PubMed6ARTICLE591

    Proteomic Analysis of Ubiquitinated Proteins in Rice (\u3ci\u3eOryza sativa\u3c/i\u3e) After Treatment With Pathogen-Associated Molecular Pattern (PAMP) Elicitors

    Get PDF
    Reversible protein ubiquitination plays essential roles in regulating cellular processes. Although many reports have described the functions of ubiquitination in plant defense responses, few have focused on global changes in the ubiquitome. To better understand the regulatory roles of ubiquitination in rice pattern-triggered immunity (PTI), we investigated the ubiquitome of rice seedlings after treatment with two pathogen-associated molecular patterns, the fungal-derived chitin or the bacterialderived flg22, using label-free quantitative proteomics. In chitin-treated samples, 144 and 167 lysine-ubiquitination sites in 121 and 162 proteins showed increased and decreased ubiquitination, respectively. In flg22-treated samples, 151 and 179 lysine-ubiquitination sites in 118 and 166 proteins showed increased and decreased ubiquitination, respectively. Bioinformatic analyses indicated diverse regulatory roles of these proteins. The ubiquitination levels of many proteins involved in the ubiquitination system, protein transportation, ligand recognition, membrane trafficking, and redox reactions were significantly changed in response to the elicitor treatments. Notably, the ubiquitination levels of many enzymes in the phenylpropanoid metabolic pathway were up-regulated, indicating that this pathway is tightly regulated by ubiquitination during rice PTI. Additionally, the ubiquitination levels of some key components in plant hormone signaling pathways were up- or down-regulated, suggesting that ubiquitination may fine-tune hormone pathways for defense responses. Our results demonstrated that ubiquitination, by targeting a wide range of proteins for degradation or stabilization, has a widespread role in modulating PTI in rice. The large pool of ubiquitination targets will serve as a valuable resource for understanding how the ubiquitination system regulates defense responses to pathogen attack

    A general Temperature-Guided Language model to engineer enhanced Stability and Activity in Proteins

    Full text link
    Designing protein mutants with high stability and activity is a critical yet challenging task in protein engineering. Here, we introduce PRIME, an innovative deep learning approach for the zero-shot prediction of both protein stability and enzymatic activity. PRIME leverages temperature-guided language modelling, providing robust and precise predictions without relying on prior experimental mutagenesis data. Tested against 33 protein datasets, PRIME demonstrated superior predictive performance and generalizability compared to current state-of-the-art modelsComment: arXiv admin note: text overlap with arXiv:2304.0378

    Comparative study on appropriate drought and flood index selection in a tropical farming island in China

    Get PDF
    The traditional drought and flood analysis method had not fully considered the proportion analysis of different drought and flood grades in the historical years of each rainfall station. This made results unconvincing and made it difficult to deeply understand the characteristics and applicability of various methods. Based on the daily rainfall data of 88 stations in Hainan Island from 1970 to 2019, the China-Z index and the Standardized Precipitation Index (SPI) were used to compare and analyze the spatial and temporal distribution characteristics of droughts and floods from three different time scales (flood season, non-flood season and the whole year). The results showed that both SPI and China-Z index can well reflect the actual drought and flood situations in Hainan Island. The analysis of the proportions of different drought and flood grades in the historical years of each rainfall station and regional historical drought and flood statistics suggested that the China-Z index had a better indication effect than SPI on the extreme drought and flood grades. The alternation of drought and flood between different eras were obvious. Hainan Island generally presented an east-west reverse drought-flood variation trend, as well as a north-south reverse drought-flood variation trend. The drought and flood in the central mountainous area of Hainan Island had been relatively stable. The distribution pattern of drought and flood had a good spatial consistency in the three periods. On the whole, Hainan Island had shown a trend of flood in the east and drought in the west in the past 50 years

    Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu

    Get PDF
    For the purpose of understanding the environmental fate of microcystins (MCs) and the potential health risks caused by toxic cyanobacterial blooms in Lake Taihu, a systematic investigation was carried out from February 2005 to January 2006. The distribution of MCs in the water column, and toxin bioaccumulations in aquatic organisms were surveyed. The results suggested that Lake Taihu is heavily polluted during summer months by toxic cyanobacterial blooms (with a maximum biovolume of 6.7 x 10(8) cells/L) and MCs. The maximum concentration of cell-bound toxins was 1.81 mg/g (DW) and the dissolved MCs reached a maximum level of 6.69 mu g/L. Dissolved MCs were always found in the entire water column at all sampling sites throughout the year. Our results emphasized the need for tracking MCs not only in the entire water column but also at the interface between water and sediment. Seasonal changes of MC concentrations in four species of hydrophytes (Eichhornic crassipes, Potamogeton maackianus, Alternanthera philoxeroides and Myriophyllum spicatum) ranged from 129 to 1317, 147 to 1534, 169 to 3945 and 124 to 956 ng/g (DW), respectively. Toxin accumulations in four aquatic species (Carassius auratus auratu, Macrobrachium nipponensis, Bellamya aeruginosa and Cristaria plicata) were also analyzed. Maximum toxin concentrations in the edible organs and non-edible visceral organs ranged from 378 to 730 and 754 to 3629 ng/g (DW), respectively. Based on field studies in Lake Taihu, risk assessments were carried out, taking into account the WHO guidelines and the tolerable daily intake (TDI) for MCs. Our findings suggest that the third largest lake in China poses serious health threats when serving as a source of drinking water and for recreational use. In addition, it is likely to be unsafe to consume aquatic species harvested in Lake Taihu due to the high-concentrations of accumulated MCs. (C) 2007 Elsevier Ltd. All rights reserved.For the purpose of understanding the environmental fate of microcystins (MCs) and the potential health risks caused by toxic cyanobacterial blooms in Lake Taihu, a systematic investigation was carried out from February 2005 to January 2006. The distribution of MCs in the water column, and toxin bioaccumulations in aquatic organisms were surveyed. The results suggested that Lake Taihu is heavily polluted during summer months by toxic cyanobacterial blooms (with a maximum biovolume of 6.7 x 10(8) cells/L) and MCs. The maximum concentration of cell-bound toxins was 1.81 mg/g (DW) and the dissolved MCs reached a maximum level of 6.69 mu g/L. Dissolved MCs were always found in the entire water column at all sampling sites throughout the year. Our results emphasized the need for tracking MCs not only in the entire water column but also at the interface between water and sediment. Seasonal changes of MC concentrations in four species of hydrophytes (Eichhornic crassipes, Potamogeton maackianus, Alternanthera philoxeroides and Myriophyllum spicatum) ranged from 129 to 1317, 147 to 1534, 169 to 3945 and 124 to 956 ng/g (DW), respectively. Toxin accumulations in four aquatic species (Carassius auratus auratu, Macrobrachium nipponensis, Bellamya aeruginosa and Cristaria plicata) were also analyzed. Maximum toxin concentrations in the edible organs and non-edible visceral organs ranged from 378 to 730 and 754 to 3629 ng/g (DW), respectively. Based on field studies in Lake Taihu, risk assessments were carried out, taking into account the WHO guidelines and the tolerable daily intake (TDI) for MCs. Our findings suggest that the third largest lake in China poses serious health threats when serving as a source of drinking water and for recreational use. In addition, it is likely to be unsafe to consume aquatic species harvested in Lake Taihu due to the high-concentrations of accumulated MCs. (C) 2007 Elsevier Ltd. All rights reserved
    • …
    corecore