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ABSTRACT
Background. Egg size and clutch size are key life history traits. During the breeding
period, it is possible for females to increase their reproductive output either by
increasing the number of eggs if the optimal egg size (OES) is maintained, or by
increasing the allocation of energy to each egg. However, the strategies adopted are
often influenced by animals’ morphology and environment.
Methods. Here, we examined variation in female morphological and reproductive
traits, tested for trade-offs between egg size and clutch size, and evaluated the relation-
ship between egg size and female morphology in three populations of Phrynocephalus
helioscopus.
Results. Female body size, egg size, and clutch size were larger in the Yi Ning (YN)
and Fu Yun (FY) populations than in the Bei Tun (BT) population (the FY and
YN populations laid more, and rounder eggs). Egg size was independent of female
body size in two populations (BT and FY), even though both populations had an
egg-size/clutch size trade-off. In the YN population, egg size and clutch size were
independent, but egg size was correlated with female body size, consistent with the
hypothesis of morphological constraint.
Conclusions. Our study found geographical variation in body size and reproductive
strategies of P. helioscopus. Egg size was correlated with morphology in the larger-
bodied females of the YN population, but not in the smaller-bodied females of the
BT population, illustrating that constraints on female body size and egg size are not
consistent between populations.

Subjects Ecology, Evolutionary Studies, Zoology
Keywords Phrynocephalus helioscopus, Optimal egg size, Morphological constraint hypothesis,
Egg size-number trade-off, Life history, Reproduction

BACKGROUND
Reproductive traits are often variable in animals as a result of differences in the quality of
resources and food availability in different habitats (Roff, 2002; Cruz-Elizalde & Ramırez-
Bautista, 2016). Egg size and clutch size are key life history traits, and have received more
attention than other reproductive traits (Amat, 2008; Qu et al., 2011; Lovich et al., 2012).
When there is less food available, females may face the problem of limited available
reproductive resources to invest in eggs. This results in a trade-off between (1) the energy
allocated to each egg (egg size), and (2) the total number of eggs (clutch size). An increase
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in resources allocated to each egg will result in a decrease in clutch size (Roff, 1992; Kaplan
& Phillips, 2006). This negative relationship between egg size and clutch size provides
evidence for reproductive trade-offs (Rowe, 1992). Variation in female reproductive output
is widespread, both interspecifically and intraspecifically. Especially for geographically
widespread species, local genetic variation, short-term phenotypic plasticity, and the
complex interactions between these two, contribute to variation in reproductive output
(Brown & Shine, 2007).

Optimal egg size (OES) theory predicts that natural selection optimizes egg size within
populations, such that when resources are not limiting for reproduction, clutch size or
number of clutches may increase, while egg size remains constant (Smith & Fretwell, 1974;
Brockelman, 1975). Natural selection predicts that females should optimize resources
allocated to each egg, and clutch size should only increase after ensuring the production
of high quality offspring (Lovich et al., 2012). In some reptiles, CS is positively correlated
with female body size, while egg size remains constant, consistent with the OES theory
(Congdon & Gibbons, 1987). However, the relationship between egg size and clutch size is
determined by many factors, and the trade-offs between egg size and clutch size are not
always evident in natural populations (Berven, 1982; Liao & Lu, 2011;Wang et al., 2011).

Egg size is often correlated with female body size in reptiles (morphological constraint
hypothesis), and both egg size and clutch size increase with an increase in female body
size, contrary to OES theory (Dunham &Miles, 1985; Clark, Ewert & Nelson, 2001; Ryan &
Lindeman, 2007; Mohamed et al., 2012). When resources are limited, reproductive output
is directly correlated with the trade-offs between egg size and clutch size, and ultimately,
with offspring survival (Congdon & Tinkle, 1982; Brown & Shine, 2009). The size of each
egg normally determines the success of incubation and offspring survival (Angilletta et al.,
2004; Räsänen, Laurila & Merilä, 2005). Females may increase energy allocation to eggs as
a way to improve offspring quality.

P. helioscopus are small (mean snout-vent length (SVL): 47.5 mm) lizards that are widely
distributed in Eurasia. Previous research on this species has focused on egg incubation
(Wang et al., 2013), and female reproductive output (Liang et al., 2015). However, variation
in female reproductive traits, and egg size-clutch size trade-offs, and the effects of female
size on egg size have not been studied in geographically different populations in order to
understand variation in investment in offspring production. In this study, we compared
female morphological traits and the relationships among egg length (EL), egg width (EW),
egg mass (EM), egg shape (ES), and clutch size (CS) in three populations of P. helioscopus.
Specifically, we:
1. Tested whether reproductive female size differed between the three populations, and
2. Examined how that variation was associated with reproductive traits, especially

fecundity, egg and clutch size, egg shape, and the trade-offs between egg size and
clutch size.
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MATERIALS AND METHODS
Ethical approval
Specimens were collected following Guidelines for Use of Live Amphibians and Reptiles
in Field Research (the Herpetological Animal Care and Use Committee (HACC) of the
American Society of Ichthyologists and Herpetologists, 2004). This study was conducted in
compliance with current laws on animal welfare and research in China and the regulations
set by the Xinjiang Agricultural University. After the research was completed, the lizards
were released where they were captured.

Study site
The populations studied here are located in three ecologically distinct locations in the
Xinjiang Uyghur Autonomous Region, China, and included locations near Bei Tun city
(BT: 87◦15′′E, 47◦26′N), Fu Yun city (FY: 89◦05′E, 46◦36′N), and Yi Ning city (YN: 80◦47′E,
43◦40′N). The BT and the YN populations were located approximately 660 km apart, and
the habitats were different at each location. The BT population was located in a typical
gravel desert with little vegetation, while the YN population was located in a loam desert
with abundant vegetation. The climate experienced by the YN population was hotter and
wetter than that experienced by the BT population. The FY and BT populations were located
approximately 160 km apart, and the FY and YN populations were located approximately
700 km apart. The vegetation and rainfall at the FY and YN locations were similar,
while the temperature regimes were similar at the FY and BT locations (Figs. 1 and 2).

Animal and egg collection
In May 2014 and May 2017, we collected P. helioscopus individuals by hand from locations
near BT (in 2014 Liang et al., 2015), FY (in 2017), and YN (in 2017). We collected lizards
from 12:00 to 18:00, when they were most active (T Liang, pers. obs., 2015, 2017; S Lei,
pers. obs., 2015), and we captured the lizards at random. Lizards were transported to
Xinjiang Agricultural University, where female lizards were palpated to determine their
reproductive state (Li et al., 2006). Fifty-three gravid females (BT: 13, FY: 24, YN: 16)
were housed individually in plastic cages containing vermiculite in a room with ambient
temperatures that varied from 20–28 ◦C with a 12-hour light/12-hour dark cycle. A 250 W
light bulb was suspended at one end of each cage, 20 cm above the cage floor, and the
lizards could freelymove towarmer and cooler places within the cage.Mealworms (larvae of
Tenebrio molitor) and water enriched with vitamins andminerals were provided ad libitum.
Females dig before they lay eggs, and we observed females every 2 hours, which allowed us
to collect eggs quickly, and prevented eggs from absorbing water in the moist vermiculite.
All eggs used in this study were collected no more than 20 min after they were laid.

Morphology and reproductive traits
We measured female snout-vent length (SVL), tail base width (TBW), egg length (EL),
and egg width (EW), using digital calipers. All measurements were accurate to within
0.1 mm. We also recorded the clutch size (CS). We weighed eggs (egg mass, EM) and
clutches (clutch mass, CM) on an electronic balance to the nearest 0.01 g. The ratio of egg
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Figure 1 Map showing the three locations in the Xinjiang Uyghur Autonomous Region of western
China where P. helioscopuswere captured for this study. The nearest cities (BT, Bei Tun, FY, Fu Yun;
YN, Yi Ning) are identified by the red dots, and collection locations are indicated by black dots with ar-
rows. Photos indicate habitat types in each sampling location (Photo credit: Tao Liang).

Full-size DOI: 10.7717/peerj.5705/fig-1

length to egg width (EL/EW) indicates the general shape of the eggs (egg shape, ES), where
1 is a round egg, and larger values indicate increasingly elongate eggs (Ji & Wang, 2005;
Kratochvíl & Frynta, 2006).

Statistical analyses
We used analysis of variance (ANOVA) to examine differences in SVL, EM, and ES, and
we used analysis of covariance (ANCOVA) to examine differences in TBW, EL, EW, RCM,
and CS between the three populations with post hoc Tukey’s tests (multiple comparisons).
We used Levene’s tests to test for heterogeneity of variances. The residuals were tested
by Kolmogorov–Smirnov tests for detecting normality. We log-transformed the variables
to minimize the heterogeneity, where necessary (King, 2000). To test egg size-clutch
size trade-offs, and analyze potential morphological constraints on optimal egg size, the
relationships between EM and EL and CS, EM and EL, EL and CS and SVL, and EW and
TBW were examined using reduced major axis (RMA) regressions rather than ordinary
least squares (OLS) regressions, because RMA accounts for an error in the independent
variable (Dunham &Miles, 1985). Historical climatic data (1990–2013) of the three study
areas were taken from the Chinese National Climatic Data Center (http://data.cma.cn).
Descriptive statistics are presented as mean adjusted (calculated using the effect function in
the ‘‘effects’’ package, (Fox & Hong, 2009) ± standard error (SE), except for SVL, EM, and
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Figure 2 Means for monthly mean air temperature (A) andmonthly mean rainfall (B) from 1990 to
2013 at three sampling locations (BT: Bei Tun, FY: Fu Yun, YN: Yi Ning) where P. helioscopuswere col-
lected. Note that months are numbered from 1 (January) to 12 (December).

Full-size DOI: 10.7717/peerj.5705/fig-2

ES, which are presented as the mean ±SE. Differences were considered significant when
P < 0.05.

All analyses were conducted using R v. 3.4.1 (R Core Team, 2017), using the packages
‘‘lmodel2’’ (Legendre, 2011), ‘‘ggplot’’ (Wickham, 2015), and ‘‘gplots’’ (Warnes et al., 2011).

RESULTS
Female morphological variation
SVL varied among populations, and was longest in the YN and FN populations, in which
females had similar SVLs (YN: 51.23mm; FY: 50.43mm), and shortest in the BT population
(F2,52= 20.75, r2= 0.45, P < 0.0001, Fig. 3A). TBW varied among populations, and was
smallest in the YN and FN populations, which had similar TBWs (YN: 7.20 mm; BT: 6.93
mm), and the largest in the FY population when controlling for SVL using ANCOVA
(F2,52= 6.82, P = 0.002, Fig. 3B).

Female reproductive traits
Females in the FY population laid heavier eggs than those in the BT and YN populations
(Table 1). Eggs were similar in length in all three populations. Eggs were wider in the FY
population, and narrower in the YN population. BT females laid smaller clutches than FY
and YN females when controlling for SVL (Table 1).

Egg size-clutch size trade-offs
We found a positive relationship in all populations between EL and EM (Fig. 4C). In BT
and FY populations, egg size decreased with clutch size, while in YN females, egg size was
independent of clutch size (Figs. 4A, 4B).
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Figure 3 Comparisons between (A) snout-vent length and (B) tail width at base of gravid females in
three populations (BT, Bei Tun; FY, Fu Yun; YN, Yi Ning) of P. helioscopus. Points indicate means with
95% confidence intervals. Different letters indicate significant differences at the P < 0.05 level.

Full-size DOI: 10.7717/peerj.5705/fig-3

Table 1 Descriptive statistics of female reproductive traits in three populations (BT: Bei Tun, FY: Fu Yun, YN: Yi Ning) of P. helioscopus.

BT (n= 35) FY (n= 90) YN (n= 63) F -level and P-value

EM (g)† 0.51± 0.02b 0.61± 0.02a 0.55± 0.01b F2,187= 11.67, r2 = 0.11, P <0.0001
range 0.32 ∼ 0.76 0.27∼ 1.02 0.28∼ 0.82
EL ( mm)# 15.7± 0.24a 14.4± 0.17a 14.9± 0.16a F2,187= 1.15, P = 0.318
range 12.47∼ 18.51 11.49∼ 19.50 9.94∼ 17.35
EW (mm)# 8.4± 0.08b 8.5± 0.06a 8.3± 0.07b F2,187= 19.42, P <0.0001
range 7.19 ∼ 9.03 6.90 ∼ 9.90 6.39∼ 9.36
ES† 1.8± 0.03a 1.7± 0.02b 1.8± 0.02ab F2,187= 6.71, r2 = 0.06, P <0.0001
Range 1.44∼ 2.27 1.43∼ 2.18 1.47∼ 2.11
CS#, * 2.9± 0.13b 3.7± 0.18a 3.8± 0.14a F2,187= 10.93, P = 0.0001
range 2 ∼ 4 2 ∼ 6 3 ∼ 5

Notes.
EM, egg mass; EL, egg length; EW, egg width; ES, egg shape; CS, clutch size.
Different letters indicate significance at the P < 0.05 level.

†ANOVA.
#One-way analyses of covariance (ANCOVAs) (for CS with snout-vent length (SVL) as the covariate, and for EL and EW with egg mass (EM) as the covariate).
*BT n= 13, FY n= 24, YN n= 16.

Relationships among egg size, clutch size, and female morphology
In the BT and YN populations, female body size was independent of EL, EW, and CS
(Fig. 5). In the YN population, while CS was independent of female body size (Fig. 5C), EL
was weakly correlated with SVL (Fig. 5A), and EW and TBW were correlated (Fig. 5B).

DISCUSSION
Females in our three populations varied in body size (SVL, TBW), and reproductive traits
(EM, CS, RCM, and egg size), in ways that supported, with some exceptions, an egg
size-clutch size trade-off in the three populations of P. helioscopus. Female body size, egg
size, and clutch size were smaller in the BT population than in the FY and YN populations,
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Figure 4 Regressions of egg mass (EM) (A) and egg length (EL) (B) and clutch size (CS) trade-offs, and
relationship between EM and EL (C) in P. helioscopus. Fitted reduced major axis regression model and
statistical significance (P < 0.05) are indicated in each case. BT, Bei Tun–Asterisk; FY, Fu Yun–Triangle;
YN, Yi Ning–Circle. Points were jittered using the geom_jitter function.

Full-size DOI: 10.7717/peerj.5705/fig-4

Figure 5 Regressions of egg length (EL) (A), egg width (EW) (B), and clutch size (CS) (C) and female
morphological traits (SVL, snout-vent length; TBW, tail base width) from three populations of P. helio-
scopus. Fitted reduced major axis regression model and statistical significance (P < 0.05) are indicated in
each case. BT, Bei Tun–Asterisk; FY, Fu Yun–Triangle; YN, Yi Ning–Circle. Points were jittered using the
geom_jitter function.

Full-size DOI: 10.7717/peerj.5705/fig-5

and the FY and YN populations laid more, and rounder eggs. Egg size was not correlated
with female body size in the BT and FY populations, but egg size-clutch size trade-offs
occurred in both populations. Trade-offs between egg size and clutch size were not found
in the YN population, but egg size was correlated with female body size in this population.

Morphological traits, such as body size and body shape, always vary among different
populations of animals (e.g., snakes: Zhong et al., 2017); lizards: (Horváthová et al., 2013);
turtles: (Werner et al., 2016). Environmental factors that exert strong effects on animal
life history traits include activity season length and food availability (Yom-Tov et al., 2006;
Horváthová et al., 2013). Our study revealed that females in the FY and YN populations
were larger than females in the BT population. Longer activity seasons were assumed to be
the cause of variation in the body size between the females of the YN and BT populations
(Liang & Shi, 2017). Temperature, which is fundamentally important for lizards (Grant &
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Dunham, 1990), was highest in YN, especially in March and November (Fig. 2A). In YN, P.
helioscopus activity began in mid-March, and hibernation began in early November, which
means that the activity period for lizards in YN was almost a month longer than in the
other two sites (BT and FY). P. helioscopus in this population were larger, probably because
of the longer growing season. It is possible that P. helioscopus age varied between the three
study locations, and this may have influenced results. However, we have no reason to
believe that the ages of the P. helioscopus captured from the three populations were very
different. We could have tested for this possibility using mark and recapture methods, but
unfortunately, this was outside the scope of this study.

The BT and the FY populations experienced similar temperatures, which raises the
question as to what caused the differences in body size. One possibility is that food
limitation might have resulted in reduced growth rates in the BT population. Rainfall is
critical for habitat quality (e.g., vegetation cover and prey abundance (Lorenzon, Clobert
& Massot, 2001) and there was significant geographic variation in rainfall between BT and
FY (Fig. 2). BT is sparsely vegetated, due to drier conditions in this location, whereas the
vegetation is more abundant in the wetter FY and YN sites (Figs. 1, 2B). Humidity is the
most important factor influencing the abundance and distribution of insects (Savopoulou-
Soultani et al., 2012; Cesne, Wilson & Soulier-Perkins, 2015), and therefore drier conditions
and sparse vegetation could be associated with less available food in the BT population.

Egg size varies among populations because of variation in the female body size, which
is an important female trait that can affect offspring quality (Steyermark & Spotila, 2001;
Morrison & Hero, 2003; Olsen & Vøllested, 2003). We found that egg size differed among
the three populations, which suggests that larger females in the FY and YNpopulations were
able to allocate more resources to egg production. In addition, egg size was also correlated
with the incubation period, with smaller eggs having a relatively shorter incubation time.
However, further studies are needed to determine whether the earlier hatching of the
smaller eggs in the BT population could provide offspring with more time to forage before
the hibernation period (Thompson & Pianka, 2001). EL was similar in the three populations
(using EM as the covariate), but EW was not. However, egg shape is also related to clutch
size, and larger clutches tend to havemore rounded eggs (Ji et al., 2002). Eggs were narrower
in the BT population, and both the FY and YN populations laid more, and rounder eggs
(Table 1). Larger reptile females tend to lay more eggs (Ryan & Lindeman, 2007; Amat,
2008). Thus, the smaller CS of the BT population, associated with their smaller body size,
may be due to limited resources (including food), as resource availability often varies
among populations (Liao, Lu & Jehle, 2014; Roitberg et al., 2015).

The trade-off between egg size and clutch size is an important concept in life-history
theory (Kern et al., 2015). Egg size (EM and EL) and clutch size were negatively correlated
in the BT and FY populations, but not in the YN population. In the YN population,
there was no egg size-clutch size trade-off, suggesting that patterns of variation in egg size
and clutch size are not always consistent in different populations (Liao, Lu & Jehle, 2014;
Roitberg et al., 2015).

Generally speaking, offspring phenotypes are influenced by female body size (e.g.,
SVL, Krist & Remeš, 2004). Body size and other factors affecting egg size will result in the
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following five possible outcomes (Lovich et al., 2012): (1) egg size is constrained by female
size (not optimized), (2) egg size is unconstrained by female morphology (optimized), (3)
egg size is unconstrained by female morphology and optimized only in the largest females
(Fehrenbach et al., 2016), (4) egg size is not constrained by the pelvic aperture width, and
is not optimized, but rather is constrained by some other non-morphological factor (e.g.,
female age or clutch number Clark, Ewert & Nelson, 2001; Harms et al., 2005; Paitz et al.,
2007), or (5) egg width is constrained and requires osteokinesis for oviposition (Hofmeyr,
Henen & Loehr, 2005; Fehrenbach et al., 2016).

Consistent with the predictions of the morphological constraint hypothesis, egg size
increased as the size of the female increased (outcome 1) in the YN population. Although
female body size in the BT population was smaller than that in the FY population, in
both cases, egg size was not correlated with female body size (outcome 2 or 4 above). For
some species with small body sizes, egg size is constrained by female morphology (Ryan
& Lindeman, 2007). In small-bodied females, the body size-specific constraints on egg
size, coupled with selection towards an optimum egg size, results in a positive correlation
between body size and egg size. Egg size (EL and EW)was not dependent on female body size
in either the BT or FY population, but there were negative correlations between egg size and
clutch size (Fig. 4), suggesting that egg size was constrained by CS (a non-morphological
factor) in both populations (Brown & Shine, 2009; outcome 4). Unexpectedly, we found
that egg sizewas correlatedwith body size in the larger-bodied females of the YNpopulation.
A positive relationship between egg size and female size indicates that there is no optimal
egg size in the YN population (Escalona, Adams & Valenzuela, 2018). However, we found
some support for the prediction that EW is constrained by TBW (Fig. 3), since eggs must
fit the female tail base width, which they pass through on their smallest axis (i.e., EW).
In some turtle species, EW but not EL increases with the size of the female (Rasmussen
& Litzgus, 2010). There was a significant (but weak) positive correlation between EL and
female SVL in the YN population, suggesting that EL is dependent upon on female SVL. EL
can be constrained by morphological factors, non-morphological factors (e.g., CS), or their
interactions, whichmay indicate that a weak relationship exists between femalemorphology
and EL in the YN population. The specific mechanisms of the non-morphological factors
require further study (Kern et al., 2015).

CONCLUSIONS
We found geographical variation in the body size and reproductive strategies of
P. helioscopus. Females in populationswith longer growing seasons and abundant vegetation
(the FY and YN populations) were larger. Lizards in the BT population were smaller,
perhaps due to limitations on food availability, or limitations on activity seasons, and
also had smaller clutches than the FY and YN populations. Females in the FY and YN
populations produced rounder eggs, perhaps due to their larger body size. This study
found that egg size was correlated with female body size in the larger-bodied females of the
YN population—an anomaly for the morphological constraint hypothesis. Egg size was
not correlated with female body size, and did not follow the optimal egg size hypothesis
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in the BT and FY populations. Trade-offs between egg size and clutch size suggest that egg
size was constrained by clutch size in both populations.

Potential genetic and age variation associated with females in these populations may
have influenced our results. However, here we demonstrate that life histories, as measured
by body size and clutch characteristics, can vary in surprising ways, sometimes supporting
the possibility of trade-offs, and sometimes not.
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Werner YL, Korolker N, Sion G, Göçmen B. 2016. Bergmann’s and Rensch’s rules and
the spur-thighed tortoise (Testudo graeca). Biological Journal of the Linnean Society
117(4):796–811 DOI 10.1111/bij.12717.

WickhamH. 2015. ggplot2.Wiley Interdisciplinary Reviews Computational Statistics
3(2):180–185 DOI 10.1002/wics.147.

Yom-Tov Y, Heggberget TM, ØysteinW, Yom-Tov S. 2006. Body size changes in
the Norwegian otter: the possible effects of food availability and global warming.
Oecologia 150(1):155–160 DOI 10.1007/s00442-006-0499-8.

Zhong GH, Liu Q, Li C, Peng P, Guo P. 2017. Sexual dimorphism and geographic varia-
tion in the asian lance-headed pitviper Protobothrops mucrosquamatus in the main-
land china. Asian Herpetological Research 8(2):118–122
DOI 10.16373/j.cnki.ahr.160011.

Liang et al. (2018), PeerJ, DOI 10.7717/peerj.5705 15/15

https://peerj.com
http://dx.doi.org/10.1643/0045-8511(2001)001
http://dx.doi.org/10.3724/SP.J.1245.2011.00097
http://dx.doi.org/10.3724/SP.J.1245.2013.00225
https://cran.r-project.org/web/packages/gplots/gplots.pdf
http://dx.doi.org/10.1111/bij.12717
http://dx.doi.org/10.1002/wics.147
http://dx.doi.org/10.1007/s00442-006-0499-8
http://dx.doi.org/10.16373/j.cnki.ahr.160011
http://dx.doi.org/10.7717/peerj.5705

