70 research outputs found

    The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX2 (X = Cl, Br, I) monolayers

    Full text link
    Topological materials are fertile ground for investigating topological phases of matter and topological phase transitions. In particular, the quest for novel topological phases in 2D materials is attracting fast growing attention. Here, using Floquet-Bloch theory, we propose to realize chiral topological phases in 2D hexagonal FeX2 (X=Cl, Br, I) monolayers under irradiation of circularly polarized light. Such 2D FeX2 monolayers are predicted to be dynamical stable, and exhibit both ferromagnetic and semiconducting properties. To capture the full topological physics of the magnetic semiconductor under periodic driving, we adopt ab initio Wannier-based tight-binding methods for the Floquet-Bloch bands, with the light-induced band gap closings and openings being obtained as the light field strength increases. The calculations of slab with open boundaries show the existence of chiral edge states. Interestingly, the topological transitions with branches of chiral edge states changing from zero to one and from one to two by tuning the light amplitude are obtained, showing that the topological floquet phase of high Chern number can be induced in the present Floquet-Bloch systems

    The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.

    Get PDF
    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs

    Nanoscale imaging of He-ion irradiation effects on amorphous TaOx_x toward electroforming-free neuromorphic functions

    Full text link
    Resistive switching in thin films has been widely studied in a broad range of materials. Yet the mechanisms behind electroresistive switching have been persistently difficult to decipher and control, in part due to their non-equilibrium nature. Here, we demonstrate new experimental approaches that can probe resistive switching phenomena, utilizing amorphous TaOx_x as a model material system. Specifically, we apply Scanning Microwave Impedance Microscopy (sMIM) and cathodoluminescence (CL) microscopy as direct probes of conductance and electronic structure, respectively. These methods provide direct evidence of the electronic state of TaOx_x despite its amorphous nature. For example CL identifies characteristic impurity levels in TaOx_x, in agreement with first principles calculations. We applied these methods to investigate He-ion-beam irradiation as a path to activate conductivity of materials and enable electroforming-free control over resistive switching. However, we find that even though He-ions begin to modify the nature of bonds even at the lowest doses, the films conductive properties exhibit remarkable stability with large displacement damage and they are driven to metallic states only at the limit of structural decomposition. Finally, we show that electroforming in a nanoscale junction can be carried out with a dissipated power of < 20 nW, a much smaller value compared to earlier studies and one that minimizes irreversible structural modifications of the films. The multimodal approach described here provides a new framework toward the theory/experiment guided design and optimization of electroresistive materials

    Substrate transfer and ex situ characterization of on-surface synthesized graphene nanoribbons

    Get PDF
    Recent progress in the on-surface synthesis of graphene nanoribbons (GNRs) has given access to atomically precise narrow GNRs with tunable electronic band gaps that makes them excellent candidates for room-temperature switching devices such as field-effect transistors (FET). However, in spite of their exceptional properties, significant challenges remain for GNR processing and characterization. This contribution addresses some of the most important challenges, including GNR fabrication scalability, substrate transfer, long-term stability under ambient conditions and ex situ characterization. We focus on 7- and 9-atom wide armchair graphene nanoribbons (i.e, 7-AGNR; and 9-AGNR) grown on 200 nm Au(111)/mica substrates using a high throughput system. Transfer of both, 7- and 9-AGNRs from their Au growth sub-strate onto various target substrates for additional characterization is accomplished utilizing a polymer-free method that avoids residual contamination. This results in a homogeneous GNR film morphology with very few tears and wrinkles, as examined by atomic force microscopy. Raman spectroscopy indicates no significant degradation of GNR quality upon substrate transfer, and reveals that GNRs have remarkable stability under ambient conditions over a 24-month period. The transferred GNRs are analyzed using multi-wavelength Raman spectroscopy, which provides detailed insight into the wavelength dependence of the width-specific vibrational modes. Finally, we characterize the optical properties of 7- and 9-AGNRs via ultra-violet-visible (UV-Vis) spectroscopyComment: 30 pages, 14 figure
    • …
    corecore