75 research outputs found

    An efficient unstructured MUSCL scheme for solving the 2D shallow water equations

    Get PDF
    The aim of this paper is to present a novel monotone upstream scheme for conservation law (MUSCL) on unstructured grids. The novel edge-based MUSCL scheme is devised to construct the required values at the midpoint of cell edges in a more straightforward and effective way compared to other conventional approaches, by making better use of the geometrical property of the triangular grids. The scheme is incorporated into a two-dimensional (2D) cell-centered Godunov-type finite volume model as proposed in Hou et al. (2013a,c) to solve the shallow water equations (SWEs). The MUSCL scheme renders the model to preserve the well-balanced property and achieve high accuracy and efficiency for shallow flow simulations over uneven terrains. Furthermore, the scheme is directly applicable to all triangular grids. Application to several numerical experiments verifies the efficiency and robustness of the current new MUSCL scheme

    Reply to comment by Lu et al. on “An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations”

    Get PDF
    This document addresses the comments raised by Lu et al. (2017). Lu et al. (2017) proposed an alternative numerical treatment for implementing the fully implicit friction discretization in Xia et al. (2017). The method by Lu et al. (2017) is also effective, but not necessarily easier to implement or more efficient. The numerical wiggles observed by Lu et al. (2017) do not affect the overall solution accuracy of the surface reconstruction method (SRM). SRM introduces an antidiffusion effect, which may also lead to more accurate numerical predictions than hydrostatic reconstruction (HR) but may be the cause of the numerical wiggles. As suggested by Lu et al. (2017), HR may perform equally well if fine enough grids are used, which has been investigated and recognized in the literature. However, the use of refined meshes in simulations will inevitably increase computational cost and the grid sizes as suggested are too small for real-world applications

    An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations

    Get PDF
    Numerical models solving the full 2-D shallow water equations (SWEs) have been increasingly used to simulate overland flows and better understand the transient flow dynamics of flash floods in a catchment. However, there still exist key challenges that have not yet been resolved for the development of fully dynamic overland flow models, related to (1) the difficulty of maintaining numerical stability and accuracy in the limit of disappearing water depth and (2) inaccurate estimation of velocities and discharges on slopes as a result of strong nonlinearity of friction terms. This paper aims to tackle these key research challenges and present a new numerical scheme for accurately and efficiently modeling large-scale transient overland flows over complex terrains. The proposed scheme features a novel surface reconstruction method (SRM) to correctly compute slope source terms and maintain numerical stability at small water depth, and a new implicit discretization method to handle the highly nonlinear friction terms. The resulting shallow water overland flow model is first validated against analytical and experimental test cases and then applied to simulate a hypothetic rainfall event in the 42 km2Haltwhistle Burn, UK

    Efficient surface water flow simulation on static Cartesian grid with local refinement according to key topographic features

    Get PDF
    Aiming at improving the computational efficiency without accuracy losses for surface water flow simulation, this paper presents a structured but non-uniform grid system incorporated into a Godunov-type finite volume scheme. The proposed grid system can detect the key topographic features in the computational domain where high-resolution mesh is in need for reliably solving the shallow water equations. The mesh refinement is automatically carried out in these areas while the mesh in the rest of the domain remains coarse. The criterion determining the refinement is suggested by a dimensionless number with a fixed value of 0.2 after sensitivity analysis. Three laboratory and field-scale test cases are employed to demonstrate the performance of the model for flow simulations on the new non-uniform grids. In all of the tests, the grid system is shown to successfully generate high-resolution mesh only in those areas with abruptly changing topographic features that dominate the flooding processes. To produce numerical solutions of similar accuracy, the non-uniform grid based model is able to accelerate by about two times comparing with the fine uniform grid based counterpart

    Hydrodynamic modelling of flow impact on structures under extreme flow conditions

    Get PDF
    Apart from the direct threat to human lives, the flood waves as a result of the rapid catchment response to intense rainfall, breaches of flood defences, tsunamis or storm surges may induce huge impact forces on structures, causing structural damage or even failures. Most existing design codes do not properly account for these impact forces due to the limited understanding of the underlying physical processes and the lack of reliable empirical formulae or numerical approaches to quantifying them. This paper presents laboratory experiments to better understand the interaction between the extreme flow hydrodynamics and the hydraulic structures and uses the measured data to validate a numerical model. The model solves the two-dimensional shallow water equations using a finite volume Godunov-type scheme for the reliable simulation of complex flow hydrodynamics. New model components are developed for estimating the hydrostatic and hydrodynamic pressure to quantify the flow impact on structures. The model is applied to reproduce two selected experiment tests with different settings and satisfactory numerical results are obtained, which confirms its predictive capability. The model will therefore provide a potential tool for wider and more flexible field-scale applications

    Assessing slope forest effect on flood process caused by a short-duration storm in a small catchment

    Get PDF
    Land use has significant impact on the hydrologic and hydraulic processes in a catchment. This work applies a hydrodynamic based numerical model to quantitatively investigate the land use effect on the flood patterns under various rainfall and terrain conditions in an ideal V-shaped catchment and a realistic catchment, indicating the land use could considerably affect the rainfall-flood process and such effect varies with the catchment terrain, land use scenario and the rainfall events. The rainfall-flood process is less sensitive for the side slope than the channel slope. For a channel slope lower than the critical value in this work, the forest located in the middle of the catchment slope could most effectively attenuate the flood peak. When the channel slope is higher than the critical one, forest located in the downstream of the catchment could most significantly mitigate the peak discharge. Moreover, the attenuation effect becomes more obvious as the rainfall becomes heavier. The fragmentation of vegetation does not reduce the flood peak in a more obvious way, compared with the integral vegetation patterns with the same area proportion. The research can help more reasonably guide the land use plan related to flood risk

    Strong magnon-magnon coupling in an ultralow damping all-magnetic-insulator heterostructure

    Full text link
    Magnetic insulators such as yttrium iron garnets (YIGs) are of paramount importance for spin-wave or magnonic devices as their ultralow damping enables ultralow power dissipation that is free of Joule heating, exotic magnon quantum state, and coherent coupling to other wave excitations. Magnetic insulator heterostructures bestow superior structural and magnetic properties and house immense design space thanks to the strong and engineerable exchange interaction between individual layers. To fully unleash their potential, realizing low damping and strong exchange coupling simultaneously is critical, which often requires high quality interface. Here, we show that such a demand is realized in an all-insulator thulium iron garnet (TmIG)/YIG bilayer system. The ultralow dissipation rates in both YIG and TmIG, along with their significant spin-spin interaction at the interface, enable strong and coherent magnon-magnon coupling with a benchmarking cooperativity value larger than the conventional ferromagnetic metal-based heterostructures. The coupling strength can be tuned by varying the magnetic insulator layer thickness and magnon modes, which is consistent with analytical calculations and micromagnetic simulations. Our results demonstrate TmIG/YIG as a novel platform for investigating hybrid magnonic phenomena and open opportunities in magnon devices comprising all-insulator heterostructures.Comment: 45 pages, 18 figures, and 2 table
    • …
    corecore