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Abstract Numerical models solving the full 2-D shallow water equations (SWEs) have been increasingly
used to simulate overland flows and better understand the transient flow dynamics of flash floods in a
catchment. However, there still exist key challenges that have not yet been resolved for the development of
fully dynamic overland flow models, related to (1) the difficulty of maintaining numerical stability and accu-
racy in the limit of disappearing water depth and (2) inaccurate estimation of velocities and discharges on
slopes as a result of strong nonlinearity of friction terms. This paper aims to tackle these key research chal-
lenges and present a new numerical scheme for accurately and efficiently modeling large-scale transient
overland flows over complex terrains. The proposed scheme features a novel surface reconstruction method
(SRM) to correctly compute slope source terms and maintain numerical stability at small water depth, and a
new implicit discretization method to handle the highly nonlinear friction terms. The resulting shallow water
overland flow model is first validated against analytical and experimental test cases and then applied to
simulate a hypothetic rainfall event in the 42 km2 Haltwhistle Burn, UK.

1. Introduction

Numerical simulation of overland flows is essential for better understanding the transient processes of flash
floods in a catchment. Traditionally, hydrological models or simplified hydrodynamic models [Lighthill and
Whitham, 1955; Govindaraju, 1988; Bates et al., 2010] are usually used for overland flow simulations at a
catchment scale. However, most of these simplified models are not capable of depicting the rapid catch-
ment responses and the highly transient surface flow processes to accurately predict water depths and
velocities the flood waves [e.g., Cea et al., 2010; Costabile et al., 2012]. Moreover, their reduced representa-
tion of physical complexity may lead to increased sensitivity to parameterization. In recent years, hydrody-
namic simulation of overland flows based on the solution to the fully 2-D shallow water equations (SWEs)
has become increasingly popular [e.g., Fiedler and Ramirez, 2000; Sanders et al., 2008; Simons et al., 2014; Yu
and Duan, 2014; Cea and Blade, 2015; Rousseau et al., 2015; Caviedes-Voullième et al., 2012; Liang et al., 2015].
Particularly, the Godunov-type SWE models have presented great potential for modeling transient overland
flows and flash floods due to their automatic shock-capturing capability [e.g., Cea and Vazquez-Cendon,
2010; Yu and Duan, 2014].

Unlike fluvial floods or dam breaks in which the inundation areas are usually confined within the floodplain
of a river channel or tsunamis in which the flood depth is significant, rainfall-induced overland flows involve
very shallow downhill flows on hill slopes. As a result, rainfall-induced overland flows commonly have two
distinctive features: (1) most of the domain is wet regardless of the local topography, which implies that
flow can develop over highly irregular topography with steep/abrupt slopes, e.g., riverbank or building roof;
and (2) water depth may be very small (at the order of centimeters) over a large part of the problem
domain. These flow features essentially impose new challenges for developing efficient and stable numeri-
cal schemes for solving the SWEs in the context of large-scale overland flow simulations.

The first challenge is related to the discretization of slope source terms for simulating very shallow flows
over steep and irregular slopes. Numerous numerical schemes [e.g., Greenberg and Leroux, 1996; LeVeque,
1998; Garcia-Navarro and Vazquez-Cendon, 2000; Zhou et al., 2001; Rogers et al., 2003; Audusse et al., 2004;
George, 2008; LeFloch and Thanh, 2011; Murillo and Garc�ıa-Navarro, 2010; Kesserwani and Liang, 2011;
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Chertock et al., 2015] have been developed to enhance the accuracy and stability for solving the SWEs with
bed slope source terms. An example is the scheme proposed by Audusse et al. [2004], in which the Riemann
variables are modified before solving the corresponding Riemann problem to preserve the lake at rest solu-
tion and positivity of water depth. Another feature of this scheme is that the computed bed slope is con-
strained by an upper bound determined by water depth. This feature can be useful when dealing with
discontinuous topography. At places like river banks and building walls, large velocities may be calculated
due to the large slope gradient at the place of discontinuity. These large velocities, which will inevitably
slow down a simulation due to the use of small time steps, are indeed unphysical because the SWEs are not
valid for excessively steep slopes. In the numerical scheme proposed by Audusse et al. [2004], the technique
that constrains the slope gradients can effectively avoid large velocities and thus enable stable and efficient
simulations. The techniques of premodifying Riemann variables and constraining slope gradients are widely
adopted by other researchers to develop SWE-based models [e.g., Liang and Borthwick, 2009; Duran et al.,
2013; Duran, 2015; Bouchut and de Luna, 2010]. These models appear to be efficient and stable for simula-
tions involving wetting and drying and have been widely used in practical applications [e.g., Hou et al.,
2013a; Wang et al., 2011; Marche et al., 2007; Mangeney et al., 2007; Liang et al., 2015]. A number of other
effective numerical schemes [e.g., George, 2008; Murillo and Garc�ıa-Navarro, 2010] have also been reported
in the literature, which apply similar slope gradient constrained technique at the wet-dry interfaces but
directly solve the Riemann problems incorporating source terms. As it has been already stated, discontinu-
ous topographic features may exist in overland flow simulations and affect numerical stability even when
the domain is fully wet. Therefore, constraining slope gradients over the whole domain seems to be inevita-
ble to maintain the overall stability of an overland flow model. However, as reported in Delestre et al. [2012],
constraining slope gradients using the aforementioned approaches may lead to incorrect calculation of bed
slopes and subsequently velocities of shallow flows running downhill. This unfortunately is a common situa-
tion in overland flow simulations.

Another challenge for developing a robust SWE-based overland flow model is related to the discretization
of friction source terms. The friction source terms are usually expressed as a nonlinear function of the
flow velocity and depth, e.g., the Manning equation. Their nonlinear nature tends to relax the flow veloc-
ity toward an equilibrium state. In section 3, we will show that the local equilibrium between friction and
bed slope can be reached much faster than the time step determined by the CFL condition in practical
overland flow simulations involving small water depth. A numerical scheme must use very small time
steps to maintain numerical stability under such a situation, leading to prohibitive computational cost.
Several implicit schemes have been developed to handle the ‘‘stiff’’ friction source terms and maintain
numerical stability [e.g., Fiedler and Ramirez, 2000; Liang and Marche, 2009; Costabile et al., 2013]. How-
ever, numerical instability is not the only concern, relaxation toward the correct equilibrium state is also
an important aspect that must be reinforced for correct calculation of overland flows because the dynam-
ics of overland flows is typically controlled by the local equilibrium between friction and bed slope. There-
fore, it is important to ensure that a numerical scheme for solving the SWEs can effectively relax the flow
toward the equilibrium state in a single time step if the relaxation time scale is much smaller than the
hydrodynamic time scale indicated by the CFL condition [Jin, 2012; Teyssier, 2014].

The choice of Riemann solvers also requires careful consideration. A Riemann solver coupled with the slope
source terms, such as the augmented Riemann solver [George, 2008], may overestimate the discharge for
subcritical flows with nonzero friction, as shown later in section 3. Several attempts have been reported in
the mathematics literature to provide a preliminary theoretical background for solving the hyperbolic sys-
tems with stiff relaxation [e.g., Liu, 1987; Chen et al., 1994; Jin, 2012]. But further research effort is still needed
to resolve the issue of implementing effective schemes for discretizing friction source terms for practical
overland flow simulations.

In summary, to address the challenges as mentioned above, a model solving the SWEs for overland flow
simulations should

1. approximate correctly slope gradients even in the limit of vanishing water depth;
2. avoid excessively large velocities in places where bed elevation changes abruptly (e.g., building walls

and river banks);
3. be able to relax the flow velocity to the equilibrium state in a single time step when the relaxation time

scale is much smaller than the hydrodynamic time scale; and
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4. predict correctly flow discharge on slopes in the presence of nonzero friction.

Satisfying these requirements are essential for a SWE model to provide acceptable numerical accuracy, sta-
bility, and efficiency for overland flow simulations, especially for the cases involving water of small depth
flowing downhill. Meanwhile, other essential numerical properties, including the preservation of lake at rest
solution and nonnegativity of water depth, should not be compromised. This paper therefore aims to dis-
cuss the challenges encountered by overland flow simulations and present a new SWE-based overland flow
model that satisfies the aforementioned requirements simultaneously. A novel surface reconstruction
method (SRM) is developed to correctly calculate the bed slope gradient in the limit of disappearing water
depth and maintain stable simulations in the presence of abrupt bed changes. The friction source terms are
discretized using an implicit method that is able to relax the velocity to the correct equilibrium state in a
single time step. The rest of the paper is organized as follows: section 2 introduces the governing equations,
i.e., the fully 2-D SWEs; section 3 provides a brief review of the relevant numerical schemes and revisits the
aforementioned challenges for overland flow simulations; section 4 presents the details of the proposed
numerical scheme; the resulting overland flow model is then validated against several test cases in section
5; and finally brief conclusions are drawn in section 6.

2. Governing Equations

The matrix form of the 2-D SWEs with source terms may be written as

@q
@t

1
@f
@x

1
@g
@y

5R1Sb1Sf (1)

where q contains the flow variables; f and g are the flux vector terms in the x and y directions; and R, Sb,
and Sf are the source terms representing respectively the rainfall rate, bed slope, and frictional effect. The
vector terms are given by

q5

h

uh

vh

2
66664

3
77775f5

uh

u2h1
1
2

gh2

uvh

2
666664

3
777775g5

vh

uvh

v2h1
1
2

gh2

2
666664

3
777775

R5

R

0

0

2
66664

3
77775Sb5

0

2gh
@b
@x

2gh
@b
@y

2
66666664

3
77777775

Sf 5

0

2
sbx

q

2
sby

q

2
6666664

3
7777775

(2)

where g is the gravitational acceleration, h is the water depth, b is the bed elevation, u and v are the depth-
averaged velocities along the x and y directions, R is the rainfall rate, q is the water density, and sbx and sby

are the frictional stresses estimated using the Manning formula:

sbx5qCf u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u21v2
p

sby5qCf v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u21v2
p

(3)

in which Cf is the roughness coefficient evaluated using

Cf 5gn2=h1=3 (4)

where n is the Manning coefficient. If the water depth is very small (�1023 m), surface tension and capillary
waves may become important. But they are currently not explicitly considered in this work. Instead, their
effects are all packed into the Manning’s friction terms.

3. A Brief Review of the Existing Numerical Schemes

In this section, we give a brief review of certain existing numerical schemes solving the SWEs for overland
flow simulations. However, there is no intention to provide an exhausted review herein and we will limit our
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scope to those prevailing and representative schemes and further explain the challenges as mentioned in
section 1.

3.1. Discretization of Bed Slope Terms
For solving the SWEs for overland flow modeling, the first effective numerical scheme to be mentioned
herein is the hydrostatic reconstruction method introduced in Audusse et al. [2004]. Along the x direction,
let i and i 1 1 denote the two adjacent cells under consideration. The first step of hydrostatic reconstruction
is to define a single bed elevation at the cell interface as

bi11=25max ðbi; bi11Þ (5)

based on which the Riemann states of water depth across the cell interface are defined as

hi11=225max ðhi1bi2bi11=2; 0Þ ; hi11=215max ðhi111bi112bi11=2; 0Þ (6)

The corresponding bed slope source term is subsequently derived and discretized to become

Sbx5ð1
2

gh2
i11=222

1
2

gh2
i21=21Þ=Dx (7)

where Dx is the cell size. This scheme preserves exactly the lake at rest solution and the positivity of water
depth if an appropriate Riemann solver is adopted. Equation (7) may be reformulated as follows:

Sbx52
1
2

gðhi11=221hi21=21Þ
hi21=212hi11=22

Dx
(8)

where hi21=212hi11=22

Dx may be viewed as the discretization of the term related to bed slope, i.e., @b
@x. Apparently,

no matter how steep the actual bed slope is, the computed value for @b
@x is hi21=212hi11=22

Dx , which essentially
imposes a constrained condition on the bed slope gradient. Although this effectively avoids the large veloc-
ities that would otherwise occur when the bed slope is excessively steep, it unfortunately also introduces
certain unwanted side effects for overland flow simulation which will be explained as follows.

Consider a simple case of uniform flow (with a fixed depth) over a constant slope, as illustrated in Figure 1a.
The water depth is smaller than the difference of bed elevation between the two neighboring cells, i.e.,

Figure 1. The bed reconstruction method of the typical well-balanced schemes where h and b respectively denote the water depth and
bed elevation: (a) idealized overland flow over a constant slope; (b) the same case at the discretized level; and (c) face values of the water
depth and bed elevation after reconstruction.
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h < bi112bi . In such a case, the computed bed slope from (6) is clearly milder than the actual slope, as shown
in Figures 1b and 1c. Following this constrained slope reconstruction, the water depth defined from (6) is
always zero at the left-hand side of a cell interface for this case, as illustrated in Figure 1c. The local Riemann
problem essentially defines a dry-bed dam break and the localized flow condition has been artificially recon-
structed to become a waterfall rather than a uniform flow, which is physically incorrect and may lead to mis-
leading prediction. The immediate effects are (1) water can only move in one direction, and (2) the forward-
moving signal speed becomes associated with a dry-bed dam break, which is much larger than the flow
velocity and will lead to overestimation of the discharge (see section A1). Numerically, it may somehow com-
pensate the underestimation of discharge due to the constrained slope gradient, but the exact amount is diffi-
cult to quantify. In the rest of this text, this numerical phenomenon is referred to as ‘‘waterfall effect.’’
Research efforts [e.g., Morales De Luna et al., 2013; Hou et al., 2014] have been devoted to resolve this issue of
incorrect discretization of bed slope terms in the original hydrostatic reconstruction method. But all of the
reported modified hydrostatic reconstruction methods still suffer from modifying water depth to zero at one
side of a cell interface for the case as illustrated in Figure 1, and the problem of ‘‘waterfall effect’’ persists.

The idea of constraining slope gradients is also used in other numerical schemes [e.g., Liang and Borthwick,
2009; Bouchut and de Luna, 2010; Song et al., 2011a]. Although the specific formulations may be different,
these approaches tend to encounter the same problem as previously mentioned [Delestre et al., 2012]. The
issue related to the incorrect discretization of bed slope terms is particularly problematic for the first-order
schemes. However, the higher order schemes may not be immunized because it is a common practice to
reduce a scheme to be first-order accurate when the predicted water depth becomes smaller than certain
thresholds, in order to stabilize a simulation [e.g., Hou et al., 2013b; Song et al., 2011b; Murillo et al., 2007;
Liang, 2010]. There are some numerical schemes [e.g., George, 2008; Murillo and Garc�ıa-Navarro, 2010] that
do not impose a constraint on the slope source terms except at the wet-dry front. While these schemes do
not underestimate the slope source terms as the hydrostatic reconstruction does, they also lose the advan-
tage provided by the constrained slope gradients, in terms of stabilizing a simulation over irregular topogra-
phy with abrupt bed changes.

3.2. Discretization of Friction Terms
We have mentioned in section 1 that it is essential for a numerical scheme solving the SWEs to relax the
flow toward an equilibrium state, in order to correctly describe an overland flow when the water depth
becomes small and the friction effect becomes predominant. Considering a 1-D problem and assuming a
positive velocity, the physical equilibrium velocity as a result of balanced bed slope and friction terms can
be obtained as

u15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sbx

gn2h21=3

s
(9)

The time scale controlling the relaxation toward such an equilibrium is given by

tf 5
1

h21@Sfx=@u
5

1
2gn2h24=3u

(10)

The hydrodynamic time scale, i.e., the time scale that the flow property in a cell can be updated (due to con-
vection), may be characterized by the time step determined by the CFL condition

tHD5
Dx

u1
ffiffiffiffiffiffi
gh

p (11)

The ratio between these two difference time scales is

tf

tHD
5

u1
ffiffiffiffiffiffi
gh

p
2Dxgn2h24=3u

(12)

Considering the typical values of the flow variables or parameters that may be encountered in practical
overland flow simulations, e.g., Dx � 10 m, h � 0:01 m, n � 0:03 s m21=3, and u �

ffiffiffiffiffiffi
gh

p
, the ratio tf

tHD
is

about 0.024, which implies that from a physical point of view the local equilibrium between friction and
bed slope can be reached much faster than the typical time step determined by the CFL condition. In order
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to correctly predict overland flows when the water depth becomes small and the friction effect becomes
predominant, a numerical scheme must be able to relax the flow velocity to the correct equilibrium state
numerically in a single time step.

A conventional way to discretize the friction source terms is achieved using implicit schemes. In practice,
implicit discretization is often reformulated to derive an effective explicit scheme. Considering a 1-D prob-
lem, many schemes [e.g., Song et al., 2011a; Busaman et al., 2015; Cea and Blade, 2015; Cea and Vazquez-Cen-
don, 2010; Burguete et al., 2008; Liang et al., 2006; Costabile et al., 2013; Singh et al., 2015; Rousseau et al.,
2015] adopt the following discretized equations

q̂n11
x 5qn

x 2
Dt
Dx
ðFn

i11=22Fn
i21=2Þ1DtSn

bx (13)

qn11
x 5

q̂n11
x

11Dtgn2ðhnÞ24=3junj
(14)

where qx 5 hu is the unit discharge in the x direction, F is the momentum flux term, Sbx is the bed slope
term, and Dt is the time step. For the implicit scheme as described in (13) and (14), the local acceleration
(flux) term becomes small and negligible when the friction term is predominant. Considering that the relax-
ation time scale is much smaller than the hydrodynamic time scale, (14) can be rescaled by taking Dt !1.
The velocity resulting from the scheme is

û15
Sbx

gn2hn11ðhnÞ24=3junj
(15)

Apparently û1 is not equal to the physical equilibrium u1 given in (9), and therefore (13) and (14) cannot
relax the velocity to the correct equilibrium state in a single time step.

Fractional splitting method has also been used for computing friction source terms. For example, Liang and
Marche [2009] proposed the following scheme

qn11
x 5q�x1

DtS�fx

112Dtgn2ðh�Þ24=3ju�j
(16)

where h�; q�x , and u� are updated from the previous time step by solving the frictionless SWEs, S�fx is the fric-
tion term calculated from h�; q�x , and u�. The velocity for Dt !1 is

û15
1
2

u� (17)

which again does not give the correct equilibrium state.

A few numerical schemes also impose an upper bound on the friction terms [e.g., Burguete et al., 2008; Liang
and Marche, 2009] so that the friction does not reverse the flow direction, which leads to û150 and again
is different from the correct equilibrium state. The scheme reported by Yu and Duan [2014] manually set
the velocity to the equilibrium state as long as the kinematic wave number is larger than a threshold, but
the criteria to determine the threshold may be case dependent, restricting its robustness for applications.

The existence of the predominant friction terms may also affect the validity of existing Riemann solvers for sim-
ulating rainfall-induced overland flows running downhill. In an extreme case, the discharge on a slope can be
significantly overestimated as already briefly mentioned in section 1. Herein the augmented Riemann solver
introduced by George [2008] is taken as an example for further analysis. This Riemann solver is implemented in
the framework of the wave propagation algorithm proposed by LeVeque [1997] and has become part of the
open-source GeoClaw software [Berger et al., 2011]. The time-marching formula in the wave propagation algo-
rithm is given as

qn11
i 5qn

i 2
Dt
Dx
ðA1DQi21=21A2DQi11=2Þ (18)

where A6DQ is defined as the fluctuations at the cell interface that are determined by solving a general Rie-
mann problem including initial bed elevation discontinuity. The mass flux, i.e., unit discharge across cell
interface i11=2 can be expressed by the fluctuations (see section A2 for detailed derivation) as
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Fh
i11=25A2DHi11=21hui (19)

where A6DH is the mass fluctuations. Considering the simple case of steady flow running downhill with a
uniform discharge and a uniform depth in which the bed slope is balanced by the friction slope, the analysis
in section A2 shows that A2DHi11=2 > 0 if the flow is subcritical and bi > bi11. In such a case, it can be obvi-
ously seen from (19) that Fh

i11=2 > hui , i.e., the mass flux computed at the cell interface by the Riemann
solver is larger than the cell-centered discharge. Although the increase of velocity due to the slope source
term can be balanced by the friction effect during the time integration, the overestimated mass flux across
cell interface cannot be eliminated by the friction effect, which leads to more water flowing across the cell
interface than the reality. For Riemann solvers coupled together with the bed slope source terms, the bed
discontinuity at the cell interface needs to generate a mass flux to balance the mass flux cause by the dis-
continuous water depth to maintain the lake at rest solution. But for steady flow featured by the balance
between the bed slope and the friction slope, such a mass flux generated by the bed discontinuity becomes
a source of error. It is very likely that certain other schemes such as the upwind treatment of bed slope
[Berm�udez et al., 1998] and the lateralized HLL Riemann solver [Fraccarollo et al., 2003] encounter the same
problem of overestimating the mass flux. In practical applications, this will speed up the overland flows
from hillslopes to river channels and consequently predict earlier arrival of flood peaks. One way to resolve
this problem is to incorporate the friction source terms into the Riemann solver, but this is outside the
scope of this paper.

Other Riemann solvers that have been widely applied to solve the homogeneous SWEs such as the HLL or
HLLC solver, do not seem to suffer from this problem. Because the HLL or HLLC Riemann solver is not cou-
pled with the slope source terms, the calculated mass flux Fh

i11=2 is equivalent to the cell-centered discharge
hui. The mass flux remains to be the original discharge as long as the increase of velocity induced by the
bed slope is correctly balanced by the friction effect during time integration. But a numerical scheme imple-
mented with the HLL or HLLC Riemann solver may suffer from the aforementioned inaccurate calculation of
slope source terms or waterfall effect, which must be overcame by incorporating with a proper slope source
term discretization scheme.

4. Numerical Scheme

In this section, a novel first-order Godunov-type finite volume scheme is presented to address the afore-
mentioned challenges in the context of overland flow and surface flood simulations.

4.1. Finite Volume Discretization
A finite volume scheme solves the integrated form of governing equations and the resulting semidiscre-
tized equation is given by

@qi

@t
1

1
Xi

XN

k51

FkðqÞlk5Ri1Sbi1Sfi (20)

where ‘‘i’’ is the cell index, ‘‘k’’ is the index of the cell edges (N 5 4 for Cartesian grids as adopted in this
work), lk is the length of cell edge ‘‘k,’’ and Xi is the cell area, FkðqÞ5fkðqÞnx1gkðqÞny contains the fluxes
normal to the cell boundary with n5ðnx; nyÞ defining the outward normal direction at the cell boundary.
Herein, the fluxes F and slope source terms Sb are computed explicitly, but the friction source terms Sf are
treated implicitly. The final time-marching scheme is given as

qn115qn2
Dt
Xi

XN

k51

FkðqnÞlk1DtðRn
i 1Sn

bi1Sn11
fi Þ (21)

in which n denotes the time level and Dt is the time step. The asymptotic behavior of the discretized equa-
tion may be analyzed as follows: as h! 0, it is straightforward to infer from nondimensionalization analysis
that the convective flux term FðqÞ is much smaller than other terms and therefore negligible; the corre-
sponding relaxation time is typically very small compared with the time step determined by the CFL condi-
tion and therefore Dt !1, which is equivalent to rescaling the equations; subsequently, (21) reduces to
the following equilibrium equation:
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Sn
bi1Sn11

fi 50 (22)

where the rainfall source term has been omitted because only the momentum equations are relevant to
the analysis. The flow velocities at the new time step can then be recovered from (22) as

un115

ffiffiffiffiffiffiffiffiffiffiffi
jjSn

bi jj
Cf

s
� Sn

bi

jjSn
bijj

(23)

This is basically the 2-D form of the equilibrium state as defined in (9). Equation (23) does not imply that the
flow is steady at the beginning. Instead, it is the result of rescaling the equation by considering that the
relaxation time scale is much smaller than the hydrodynamic time scale. Therefore, (21) is able to relax the
velocity to the equilibrium state in a single time step when h! 0 as long as the implicit part of (21) is
solved exactly. Note that the use of implicit schemes as (13)–(14) and (16) does not ensure the recovery of
the correct equilibrium state because the implicit schemes have been reformulated into explicit forms and
the implicit part is no longer solved exactly.

4.2. Interface Fluxes and Slope Source Term Discretization
As discussed in the previous section, the augmented Riemann solvers [e.g., George, 2008] may lead to over-
estimated discharge on slopes. The classic Riemann solvers that solve the homogeneous SWEs appear to be
a more suitable choice and an HLLC approximate Riemann solver is adopted to calculate the interface fluxes
in (21) [see Liang and Borthwick, 2009; Toro, 2001 for detailed implementation]. The HLLC Riemann solver
does not automatically preserve the lake at rest solution and it is necessary to implement the hydrostatic
reconstruction scheme [Audusse et al., 2004] or other effective approaches to modify the Riemann states
before solving the local Riemann problems. In this section, a novel surface reconstruction method (SRM) is
proposed to integrate with hydrostatic reconstruction to obtain the Riemann states to define the local Rie-
mann problems across cell interfaces and overcome the limitations of the existing hydrostatic reconstruc-
tion implementations. Specifically, SRM can effectively (1) avoid the ‘‘waterfall effect’’ when evaluating the
fluxes; (2) preserve the original bed slope when necessary for correct prediction of flow velocities; and (3)
constrain the bed slope only for the cases where the topography is ‘‘genuinely’’ discontinuous to maintain
stability.

To implement the proposed SRM, the water surface elevation (defined in an arbitrary cell ‘‘i’’ as gi5hi1bi) at
cell interfaces is first reconstructed to support the derivation of Riemann states. Considering two adjacent
cells ‘‘i’’ and ‘‘i 1 1,’’ the SRM reconstructed water surface elevations at left-hand and right-hand sides of their
common interface are given by

gL5gi1max ½0;min ðbi112bi2db; gi112giÞ�

gR5gi111max ½0;min ðbi2bi111db; gi2gi11Þ�

(
(24)

with

db5bi11=212bi11=22 (25)

where bi11=21 and bi11=22 are respectively the bed elevation at the right-hand and left-hand sides of the
cell interface, obtained through slope limited interpolation of the related cell center values

bi11=225bi1riWðriÞrbi ; bi11=215bi111ri11Wðri11Þrbi11 (26)

where r is the distance vector from the cell center to central point of the cell interface, WðrÞrbi is the bed
gradient restricted by a minmod slope limiter that is defined on a rectangular Cartesian grid for cell ‘‘i’’ as

WðriÞ5max ½0;min ðri ; 1Þ� and ri5
f12fi

fi2f2
(27)

in which the subscripts 1 and – denote the upstream and downstream cells, respectively. The interpolated
bed elevations are only calculated at the beginning of a simulation to reduce computational cost. The use
of a slope limiter herein is crucial for distinguishing the discontinuous and smooth topographies and apply-
ing the constraint to the slope gradient at the right place.
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From the reconstructed water levels in (24), the corresponding states of bed elevation at the left-hand and
right-hand sides of the cell interface can be obtained as

bL5gL2hi

bR5gR2hi11

(
(28)

The Riemann states can then be deduced by first defining a single bed elevation at the cell interface, as sug-
gested by Audusse et al. [2004]

bf 5max ðbL; bRÞ � max ðbi; bi11Þ (29)

based on which the Riemann states of water depth are defined as

hL5max ð0; gL2bf Þ

hR5max ð0; gR2bf Þ

(
(30)

which reinforces the nonnegativity of water depth. The Riemann states of the other flow variables (i.e., unit-
width discharges) are subsequently obtained

½hu�L5hLui; ½hv�L5hLvi

½hu�R5hRui11; ½hv�R5hRvi11

(
(31)

where ui5½hu�i=hi and ui115½hu�i11=hi11 (similarly vi and vi11) are the velocities defined at the cell center.

It should be noted that (24) has an asymmetric form so that it only modifies the lower water surface eleva-
tion between the two. It effectively takes into account all different water surface and bed elevation configu-
rations that are possibly encountered in surface flow simulations. Without losing generality, we assume that
bi < bi11. Because the slope gradient is limited by a minmod limiter, the monotonicity of the bed elevations
is preserved and we always have db � 0.

When db50, i.e., the slope is constant across the four consecutive cells involved in the slope limited recon-
struction in (26), there are three possible configurations to consider. Figure 2a illustrates the first case where
bi112bi > gi112gi > 0. From (24), we have gL5gi1ðgi112giÞ and so the water surface at the left-hand side
will be lifted to the same level as that at the right-hand side. Figure 2b presents the second case where
bi112bi < gi112gi . From (24), it gives gL5gi1ðbi112biÞ, indicating that the water surface at the left-hand
side will be raised to eliminate the difference between the bed elevations. Finally, the third case involves
gi112gi 	 0, as shown in Figure 2c, where (24) imposes no modification. With the reconstructed water sur-
face elevations, the Riemann states of water depth are obtained through (28)–(30), which are also shown in
Figure 2. In all of the three cases, the reconstructed water depths at both sides of the cell interface are non-
zero; the direction of fluxes depends on the local flow and topographic conditions. Therefore, SRM effec-
tively avoids the artificial ‘‘waterfall effect’’ created by the specific numerical treatment as found in the
prevailing hydrostatic reconstruction implementations [e.g., Audusse et al., 2004].

When db > 0, there are also different cases to be considered. When bi112bi2db > gi112gi > 0, equation
(24) leads to gL5gi1ðgi112giÞ and the resulting water surface reconstruction is identical to Figure 2a. Simi-
larly, gi112gi 	 0 defines the case identical to the one as illustrated in Figure 2c for db50. When
bi112bi2db < gi112gi , as illustrated in Figure 3, equation (24) gives gL5gi1ðbi112bi2dbÞ, implying that
the reconstructed bed elevation bL on the left-hand side is db lower than bR (i.e., bi11) which is untouched
during the reconstruction. This can be also confirmed by identifying the reconstructed bed elevations fol-
lowing (28): bL5gL2hi5bi112db; bR5gR2hi115bi11, and therefore bR2bL5db, confirming that the varia-
tion between the interpolated bed elevations db is preserved during the reconstruction. With the
reconstructed water surface elevation, the Riemann states of the water depth are then defined from (30): hL

5max ð0; hi2dbÞ and hR5hi11 as bf 5bi11. Considering hL5max ð0; hi2dbÞ, it is clear that hL depends on
the magnitude of db, which essentially quantifies the discontinuity of the bed profile. If the bed curvature is
small, db will be small and it is likely that db < hi , leading to a positive hL, as shown in Figure 3a. If the bed
curvature is large or there is an abrupt change of bed elevation (e.g., a wall or riverbank), db may likely
become larger than hi, leading to hL 5 0, as shown in Figure 3b. In this case, the water can only flow down-
hill from the higher side, effectively representing the real-world situation.
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Another advantage of SRM is that it does not affect the maximum value between bi and bi11. Following the
definition of the single face value of bed elevation in (28), the genuine bed variation within a cell is effec-
tively preserved during the reconstruction. The bed slope source terms can be simply discretized using the
following equation:

Sbi5

0
1
Xi

X 1
2

gðhi1hL;kÞðbi2bf ;kÞnk lk

0
@

1
A (32)

where hL;k is the left Riemann state of water depth at cell edge ‘‘k’’ and bf ;k is the modified face value of the
bed elevation that will be introduced below.

Considering an arbitrary cell ‘‘i,’’ violation of the lake at rest solution and numerical instability may occur dur-
ing a simulation when the final reconstructed water surface elevation at one of its cell interface is lower
than the bed elevation at another cell interface along the same direction. As illustrated in Figure 4, this basi-
cally reflects the cases when the flow hits a ‘‘wall’’ or when cell ‘‘i’’ has an excessive slope caused by abrupt
change of bed elevation. In order to preserve the lake at rest solutions in the vicinity of wet-dry interfaces
and avoid numerical instability caused by abrupt change of bed elevation, the following local bed modifica-
tion scheme is proposed and applied to all of the computational cells

Figure 2. SRM implementation when db50 and (a) bi112bi > gi112gi > 0; (b) bi112bi < gi112gi ; and (c) gi112gi 	 0. Illustration of (left) the original discretization with the dashed
line representing the limited slope, (middle) the water surface elevation reconstructed according to (24) with the dashed line representing the original location of the bed, and (right)
the Riemann states of water depth defined following (29) and (30).
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bf 5bf 2Db (33)

Db5max ð0; bf 2giÞ if hi11 < eh

Db5max ð0;min ðdb; bf 2giÞÞ if hi11 > 5eh

(
(34)

where eh is an infinitesimal value to define dry cells, which is taken as 10210 m in this work. It should be par-
ticularly noted that the original water surface elevation gi at the cell center rather than the reconstructed

Figure 3. SRM implementation when db > 0 and bi112bi2db < gi112gi : (a) 0 < db < hi and (b) db > hi . Illustration of (left) the original discretization with the dashed line representing
the limited slope, (middle) the water surface elevation reconstructed according to (24) with the dashed line representing the original location of the bed, and (right) the Riemann states
of water depth defined following (29) and (30).

Figure 4. Local modification of interface bed elevation after water surface reconstruction: (a) wet-dry cells and (b) wet-wet cells.
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value gL is used in (34) to calculate Db. Without losing generality, it is assumed that the reconstructed water
surface elevation at the left-hand side cell interface of cell ‘‘i,’’ i.e., ‘‘i21=2,’’ is lower than the bed elevation at
the right-hand side cell interface ‘‘i11=2.’’ Figure 4a represents the case when the flow hits a ‘‘wall,’’ i.e.,
when cell ‘‘i’’ is wet but cell ‘‘i 1 1’’ is dry with a ground level higher than the water surface. With Db5bf 2gi ,
the local bed modification (33) and (34) essentially lowers the bed at cell interface ‘‘i11=2’’ until it becomes
horizontal to the reconstructed water surface at ‘‘i21=2.’’ This effectively preserves the lake at rest solutions.
When both cell ‘‘i’’ and cell ‘‘i 1 1’’ are wet, (34) gives Db5max ð0;min ðdb; bf 2giÞÞ. In a normal condition
when the domain topography is smooth or has a constant slope, db will be small/zero, so does Db. The pro-
posed local bed modification scheme does not take effects and the computation is undertaken with the
bed slope inside cell ‘‘i’’ correctly represented. Figure 4b illustrates a case when bed level at cell ‘‘i 1 1’’
changes abruptly and is much higher than the water surface at cell ‘‘i’’ (i.e., db > bf 2gi), as a result of exces-
sive bed curvature or discontinuous topography. This may lead to numerical instability during a simulation
and should be avoided. From (34), we have Db5bf 2gi and then from (34) bf 5bf 2Db5gi . This effectively
removes the excessive slope in cell ‘‘i’’ and hence ensures a stable simulation; otherwise, time steps may
become prohibitively small due to the large velocities calculated from large slope source terms.

The current numerical method, featured with the aforementioned SRM and local bed modification schemes,
strictly preserves the lake at rest solution even when the numerical solution involves wetting and drying
over irregular bed topography. This may be proved as follows: for a lake at rest problem with a stationary

water surface g, we have bf ;k5g2hL;k ; the momentum components of Sbi in (32) can be rewritten as

1
Xi

P 1
2 gðhi bi2hig1h2

k;LÞ
h i

nk lk ; the first two terms vanish following simple algebra manipulation and the

expression becomes 1
Xi

P 1
2gh2

k;Lnk lk ; this effectively balances the momentum fluxes to preserve the lake at

rest solution.

4.3. Friction Source Term Discretization
The implicit part of (21) is solved directly rather than reformulated into an explicit form as in (16) to ensure
the flow velocities relaxed to the correct equilibrium state in a single time step when the friction becomes
predominantly large. Since the continuity equation does not involve a nonzero friction term, the implicit
scheme only applies to the momentum equations. The implicit terms in the x and y direction momentum
equations are interdependent, and an iteration method must be used. Denoting the unit-width discharge
Qn11

i 5ð½uh�n11
i ; ½vh�n11

i ÞT , the momentum components of (21) may be rewritten as

Qn11
i 5Qn

i 1DtðAn
i 1Sn11

i Þ (35)

where An
i 5 1

Xi

XN

k51
FkðqnÞlk1Sn

bi represents the momentum components of the convective fluxes and
slope source terms and Sn11

i contains the friction source terms for the momentum equations given by

Sn11
i 52gn2ðhn

i Þ
27=3Qn11

i jQn11
i j (36)

When the water depth is infinitesimally small, the friction source terms calculated from (36) may become
excessively large (�1020 depending on eh), which may exceed the machine floating number precision and
generates unexpected machine error that prohibits a converged solution. To effectively avoid this (e.g., to
rescale the equation to �1010 and avoid any unexpected machine error), a simple technique is imple-
mented herein. The necessary auxiliary variables are firstly defined as

Un11
i 5Qn11

i =hn11
i ; Un

i 5Qn
i =hn11

i ;A
n
i 5An

i =hn11
i (37)

S
n11
i 52gn2ðhn11

i Þ24=3Un11
i jUn11

i j (38)

Herein hn11 is known following the update of the continuity equation, which is done before solving the
momentum equations. A new time-marching equation for the auxiliary variables can be obtained by divid-
ing both sides of (35) by hn11

i

Un11
i 5Un

i 1DtðAn
i 1S

n11
i Þ (39)

This is then solved using the Newton-Raphson method and Qn11
i can be easily recovered from Un11

i using
the relationship as defined in (37).
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The Newton-Raphson iteration procedure implemented for solving (39) is given as

Up115Up1½I2DtJðUpÞ�21½DtSðUpÞ1DtA
n
i 2ðUp2Un

i Þ� (40)

with a convergence criteria defined as

jUp112Upj 	 0:001jUpj (41)

where I is the identity matrix, J is the Jacobian matrix of S, p and p 1 1 denote the iteration steps, and Un
i

provides the initial values to start the iterations. The solution procedure usually converges in two to three
steps, or less if the flow is near to a steady state or the friction is small. Numerical experiments show that
the iteration procedure requires less than 10% of the run time needed for calculating interface fluxes. There-
fore, the current implicit friction term discretization method does not affect the computational efficiency of
the overall numerical scheme.

It should be noted that no special treatment is needed for wet-dry front except for assuming a cell is dry
and setting the velocities to zero when water depth is smaller than a small threshold (e.g., 10210 m as used
in this work).

4.4. Stability Criteria
The proposed fully implicit method for discretizing the friction source terms does not impose any constraint
on time steps. The stability criterion for the overall finite volume Godunov-type scheme is therefore the CFL
condition, which is given as

Dt5CFL min
i

ð di

jui j1
ffiffiffiffiffiffiffi
ghi

p Þ (42)

where di is the minimum distance from cell center to cell edges and the CFL number may take any value
between 0 and 1.

Table 1. Summary of Models Used for Comparison

Model Name Slope Source Term Friction Source Term

George George’s Riemann solver New implicit
HR Hydrostatic reconstruction method New implicit
SRM New surface reconstruction method New implicit
SRMEXP New surface reconstruction method Old implicit
SRMSPLIT New surface reconstruction method Fractional splitting
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Figure 5. 1-D steady and uniform flow on slopes: computed steady state velocities and discharges on five different slopes. (left) Velocity
and (right) discharge.
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5. Model Validation and Results

In this section, several test cases are simulated to validate the current overland flow model imple-
mented with the proposed novel SRM and implicit friction term discretization scheme. Results
obtained from a selection of alternative models introduced in section 3 are compared to demon-
strate the improved capability of the current model. Table 1 provides a list of the models used in
the simulations with different combinations of slope and friction source term discretization
approaches. In Table 1, the old implicit scheme refer to the 2-D form of the explicit reformulation
presented in (13) and (14) [e.g., Song et al., 2011a] and the fractional splitting scheme refer to the
implicit method used in Liang and Marche [2009] for which the 1-D form is presented in (16). In all
of the simulations, CFL 5 1.0 and g 5 9.81 m/s2 are used. The boundary conditions are imposed
using the ghost cell method described in Liang [2010].
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Figure 6. 1-D steady and uniform flow on slopes: relaxation toward the equilibrium state with three different spatial resolutions. (left col-
umn) Normal view and (right column) zoomed view for clear illustration of SRM and SRMEXP.
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5.1. 1-D Steady and Uniform Flow
on Slopes
One-dimensional steady and uniform
flow on inclined slopes can serve as a
basic benchmark test to verify whether
the slope source terms and friction
source terms are correctly discretized
and computed. In this test case, water
depth h 5 0.01 m, the Manning coeffi-
cient n 5 0.033 s m21=3, and five differ-
ent slopes (0.02, 0.04, 0.06, 0.08, and
0.1) are used. Simulations are carried
out at the same spatial resolution
(Dx510 m) using models with differ-
ent schemes to discretize slope source
terms. As the slope increases, the
steady uniform flow changes from sub-
critical to supercritical. The steady state
velocities computed by different mod-
els are plotted against the analytical

solution in Figure 5. Both of the ‘‘SRM’’ and ‘‘George’’ models predict correct steady state velocities while the
‘‘HR’’ model fails to give correct results for the flows over all five slopes. The velocities predicted by the ‘‘HR’’
model do not vary with the change of the slopes, indicating that the slope gradient approximated in the
‘‘HR’’ model is effectively bounded. The mass flux at a sample cell interface, i.e., discharge, computed by dif-
ferent models is also compared in Figure 5. For the ‘‘HR’’ and ‘‘SRM’’ models, the discharges are given by the
mass flux calculated by the HLLC Riemann solver; for the ‘‘George’’ model, the discharge is calculated by
(19). It should be noted that the discharge here is not necessarily the same as hu defined at the cell centers.
Only the ‘‘SRM’’ model produces correct interface mass flux for all five slopes. The ‘‘HR’’ model completely
fails and predicts the same discharge for all five simulations. The predicted discharge is larger than the ana-
lytical discharge at one simulation in the subcritical region but smaller than the correct solution in all other
four simulations including one for subcritical flow. The discharge predicted by the ‘‘HR’’ model is consistent
with the analysis in section A1, which is 1

3 hu1 2
3 h

ffiffiffiffiffiffi
gh

p
. The overestimated discharge is caused by the combi-

nation of the constrained slope gradient and the ‘‘waterfall effect’’ as implemented in the numerical
scheme. George’s augmented Riemann solver overestimates the discharge in the two simulations in the
subcritical region, which is consistent with the analysis provided in section 3. Section A2 analytically shows
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Figure 7. Rainfall on a V-shaped catchment: geometry of the catchment.
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Figure 8. Rainfall on a V-shaped catchment: comparison between the kinematic wave analytical solutions and simulated hydrographs at the (left) hillside and (right) channel outlet.
Note that the kinematic wave solution for the falling limb of the channel outlet hydrograph is not available.
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that the discharge will be h
ffiffiffiffiffiffi
gh

p
if the depth is smaller than half the bed elevation difference. The discharge

computed by the ‘‘George’’ model is therefore consistent with the analysis in section A2.

Further simulations are also carried out using the models with different discretization schemes for the fric-
tion source terms to test their capability in terms of relaxing the flow to the equilibrium state. While the
time steps predicted by the CFL condition increases with the cell size, the relaxation time toward equilib-
rium does not depend on the cell size. Therefore, it can be expected that the flow is more likely to be
relaxed to the equilibrium state in a single time step when using coarser grids. Therefore, the simulations
are performed at three spatial resolution (Dx51 m, Dx510 m, and Dx5100 m) and for the same slope (0.1).
The water is set as motionless at the beginning. The velocities are normalized by the steady state velocity
and plotted against the time step count in Figure 6. The ratios between the relaxation time scale and the
hydrodynamic time scale are 0.179, 0.0179, and 0.00179, respectively, for three different grids. This indicates
that the relaxation time scales are much smaller than the hydrodynamic time scales and a viable numerical
scheme must be able to relax the velocities to the equilibrium in almost a single time step. Clearly, the
‘‘SRMSPLIT’’ model is not able to relax to the correct equilibrium state at all three spatial resolutions and the
deviation increases as the resolution decreases. ‘‘SRMEXP’’ can relax the flow to the correct equilibrium state
but strong oscillations are observed for coarse grids (Dx510 m and Dx5100 m). Furthermore, excessively
large velocities are observed at the first time step. The reason is that these two schemes are essentially
explicit, which effectively results in zero friction at the first time step, leading to large velocities. On the con-
trary, the ‘‘SRM’’ model with the new friction discretization scheme is able to quickly and monotonically
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Figure 9. Rainfall on a V-shaped catchment: zoomed-in view of the discharge at the hillside. (left) Initial stage and (right) transition between increasing phase and steady phase.
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Figure 10. Rainfall on a V-shaped catchment: comparison of time histories of water depth at (left) middle of the hillside end and (right) channel outlet.
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relax the flow to the correct equilibrium state, achieved in only a single time step even when coarse grids
are used (Dx510 m and Dx5100 m).

5.2. Rainfall on a V-Shaped Catchment
As shown in Figure 7, the V-shaped catchment consists of two hillsides with a 0.05 slope and, in between, a
channel with a 0.02 slope. Constant and uniform rainfall with an intensity of 10.8 mm/h falls on the whole
catchment for 1.5 h. The Manning coefficient is set to 0.015 s m21=3 on the hillsides and 0.15 s m21=3 in the
channel. During the simulations, the catchment is discretized using a uniform grid of 10 m resolution. The
whole domain is closed except for the channel outlet where open boundary conditions are imposed.

Figures 8 and 9 plot the hydrographs at the hillsides and channel outlet predicted by the three different
models, comparing with the analytical solutions derived based on the kinematic wave assumption [Di Giam-
marco et al., 1996]. The time histories of water depth at the middle of hillside end and channel outlet are
compared in Figure 10. Closest agreement with the analytical solutions is achieved by the ‘‘SRM’’ model.
The hydrographs predicted by the ‘‘HR’’ model has slower rising limbs, which implies that the discharge has
been underestimated. The maximum water depth computed by the ‘‘HR’’ model is about 0.01 m, which is
much smaller than the bed elevation change across two cells (0.5 m). Therefore, we can conclude that the
error is caused by the incorrect approximation of the slope gradient. George’s Riemann solver gives a cor-
rect hillside hydrograph because the flow is on the hillside is supercritical and George’s scheme does not
cause an overestimated discharge in supercritical flow conditions. But much less favorable prediction with
small unphysical oscillations is found in the hydrograph at the channel outlet.

Figure 11. Results for still water test after t 5 5000 s. (left) 3-D view and (right) water level and velocity at the diagonal cross section.

Figure 12. Rainfall-runoff experiment: (left) domain topography and (right) buildings layout.
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With regard to the different friction discretization schemes, the ‘‘SRMSPLIT’’ model gives the worst results.
The ‘‘SRMEXP’’ model produces better results; however, unphysical oscillations can be found at the initial
stage of the hydrograph at the hillside and larger deviation from the analytical solution is predicted at the
rising limb close to the steady phase, as shown in Figure 9. The different results predicted by the models
implemented with different friction discretization schemes are consistent with the analysis as provided in
section 3 and the results for the 1-D steady uniform flow test. The results clearly confirm that the new fric-
tion discretization scheme is indeed able to facilitate accurate and stable simulation of overland flows with
reasonable large time steps (CFL 5 1.0).

5.3. Still Water Test
In this test case, a quiescent steady flow over uneven topography [Hou et al., 2013a] with wet-dry interface
is considered to demonstrate that the new ‘‘SRM’’ model is able to preserve the lake at rest solution exactly.
The 8000 m 3 8000 m domain is discretized into 160 3 160 cells. The topography featured with two over-
lapped bumps is defined as bðx; yÞ5max ð0; B1; B2Þ with B15200020:00032½ðx23000Þ21ðy25000Þ2� and
B2590020:000144½ðx25000Þ21ðy23000Þ2�. The initial water level is 1000 m. The simulation results at
t 5 5000 s are illustrated in Figure 11 and clearly demonstrate that the lake at rest solution is exactly
preserved.

5.4. Rainfall-Runoff Experiment in a Simplified Urban Area
The rainfall-runoff experiment carried out by Cea et al. [2010] is considered to further validate the current
SWE model for overland flow simulation in urban areas. The experimental urban catchment is represented

Figure 13. Rainfall-runoff experiment: ‘‘SRM’’ predicted water depths and velocities at the end of the three rainfall events.
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Figure 14. Rainfall-runoff experiment: comparison between the numerical and experimental hydrographs at the domain outlet for the three rainfall events.
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by a steel basin decorated with buildings made from wood blocks, with the topography and the layout of
buildings shown in Figure 12. The basin features a valley in the middle with the bottom edge designed to
be the outlet. The horizontal dimensions of the buildings are 20 cm 3 30 cm and the vertical outer walls
are 20 cm in height. All of the buildings also have a roof with two sloping sides from the center to the edge.
Rainfall events with a constant intensity of 300 mm/h but three different durations, i.e., 20, 40, and 60 s, are
imposed on the basin. Following Cea et al. [2010], the three rainfall events are referred to as Q25T20,
Q25T40, and Q25T60.

During the simulation, the building blocks are represented in the model as part of the topography with-
out any further special treatment. The Manning coefficient is set to 0.016 s m21=3 over the entire domain
as suggested by Cea et al. [2010]. The uniform computational grid consists of 50,000 cells with a resolu-
tion of 0.01 m. Zero water depth is assumed in the boundary ghost cells at the bottom edge of the
domain to represent the outlet boundary conditions while the other three edges are assumed to be
closed.

Figure 13 presents the ‘‘SRM’’ predicted water depths and velocities induced by the three rainfall events
at the time when the rainfall stops. It is evident that rainfall-runoff process and the resulting flow patterns
are closely related to domain topography. The rainwater flows from sloping roofs of the buildings to the
ground, which is then directed to valley at the center of the basin and travels toward the bottom outlet.
Although the water depths on the building roofs are very small, the velocities are significant and diverge

from the central line of the roofs due to the
slopes, indicating correct representation of
the slope gradients and runoff with small
water depth. Because the proposed numeri-
cal scheme effectively handles excessive
slopes, at the edges of the buildings where
abrupt change of the topography occurs,
velocities are not significantly larger than
other areas. Figure 14 compares the simu-
lated discharges produced by all three dif-
ferent models with the experiment
measurements at the bottom outlet for the
three rainfall events. Good agreement is
achieved by the ‘‘SRM’’ model for all three
cases, confirming the model’s simulation
accuracy, although the peak discharges
seem to be slightly underestimated. The

Figure 15. Rainfall-runoff experiment: simulation results predicted by the model implemented with the George’s Riemann solver for rain-
fall event Q25T60 at t 5 60 s. (left) Velocity and (right) Froude number.
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Figure 16. Rainfall-runoff experiment: temporal change of time steps pro-
duced by the three different models for the Q25T60 simulations.
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‘‘HR’’ model also gives good results because the resolution is high for this small-scale test case and the
inadequacy of the hydrostatic reconstruction method in handling small water depth is therefore not pro-
nounced. The peak discharges given by the ‘‘George’’ model are slightly larger than the experiments,
which may be because the flow in the valley center is mostly subcritical, as illustrated in Figure 15b, and
the George’s Riemann solver typically overestimates discharge on slopes for subcritical flows as discussed
in section 3. It is worth mentioning that the cell size used in this test case is much smaller than that could
be used for real-world simulations, so that the limitations of the ‘‘HR’’ and ‘‘George’’ models relating to the
inaccurate calculation of slope source terms and discharge are not particularly pronounced and all three
methods provide similar results.

In this test, the entire domain is wet due to uniform rainfall events. Because George’s Riemann solver does
not involve any special treatment to trim the large slopes due to discontinuous bathymetry, the predicted
velocities near to building walls where abrupt change of bed elevation occurs are significantly higher (5–10
times) than those in other areas with smooth topography. Such ‘‘big’’ velocities are caused by numerical
rather than physical reasons. In reality, the water gains momentum when falling off a roof, but most of the
gained momentum is in the vertical direction and will be dissipated when water hits the ground, which
does not necessarily lead to the increase of horizontal velocities. However, these ‘‘big’’ velocities effectively
control the model stability, leading to the use of much smaller time steps, as shown in Figure 16. This inevi-
tably affects the computational efficiency of the model.

5.5. Laboratory-Scale Flash Flood Onto a Simplified Urban District
This urban flash flood experiment was carried out by Testa et al. [2007] as part of the joint European IMPACT
(Investigation of extreMe flood Processes And unCerTainty) project. The physical model is a 1:100 represen-
tation of the Toce River valley built in the CESI facility in Milan, Italy. Cubic concrete blocks with a side
length of 15 cm were placed in a staggered layout to represent buildings, as shown in Figure 17. The inflow
hydrograph (total discharge at the inlet), as shown in Figure 17, was controlled by a head tank located at
the left-hand side of the valley [Testa et al., 2007], which was referred to as the ‘‘low’’ discharge in Testa et al.
[2007]. The water depth was continuously measured at 10 gauge points during the 60 s of the experiment;
the locations of the gauges are also illustrated in Figure 17. Open boundary conditions are imposed at the
downstream (right) end of the valley.

The Manning coefficient is set to 0.0162 s m21=3 as suggested by Testa et al. [2007]. A uniform
computational grid at a 0.025 m 3 0.025 m resolution is used for the simulation. The buildings
are represented in the models by simply raising the bed elevation 0.15 m above the ground. Fig-
ure 18 presents the ‘‘SRM’’ predicted water depths and velocities at different output times, which
clearly shows the model’s capability in capturing the transient features of the flash flood. The
velocity of the flood front is high before it reaches the buildings; the flow is then slowed down

Figure 17. Flash flood onto an urban area: (left) layout of the physical model and (right) inflow hydrograph.
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by the buildings and a reflected shock is developed. Meanwhile, a significant amount of floodwa-
ter bypasses the built area through the two sides of the valley. Flood depth starts to decrease
after the peak flow has passed. Figure 19 further verifies the current simulation results by com-
paring the predicted time histories of water depth with the measured data and those predicted
by alternative models (‘‘George’’ and ‘‘HR’’). Overall, the current numerical results agree well with
the measurements and correctly predict both of the arriving time and peak water depth except
for Gauges P6 and P8, where the numerical simulation underestimates the flood peak by 1 and
2 cm, respectively. This may be attributed to the three-dimensional flow phenomena associated
with this highly transient and turbulent flow processes that are not able to be captured by the

Figure 18. Flash flood onto an urban area: simulated water depths and velocities.
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shallow water equations. Satisfactory reproduction of this experimental benchmark test confirms
that the current SRM model can successfully simulate those highly transient flows with wetting
and drying. This test case does not typically involve those challenging perspectives for overland
flow simulations, and so most Godunov-type schemes can produce satisfactory results. The results
predicted by the ‘‘SRM’’ model are similar to the alternative simulations produced by the other
two models.

5.6. Hypothetic Rainfall Event on the Haltwhistle Burn Catchment
The Haltwhistle Burn catchment, covering an area of about 42 km2, is a small catchment in Northumberland,
England. It is one of the Rapid Response Catchments recognized by the UK Environment Agency. The topo-
graphic map of the catchment is shown in Figure 20.
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Figure 19. Flash flood onto an urban area: time histories of water depth at nine sample gauges.
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In order to verify the new model’s capability in simulating overland flows over real-world topography, a
hypothetic rainfall event is assumed and the resulting rainfall-runoff and overland flow processes are simu-
lated using the new SRM model. Constant and uniform rainfall with an intensity of 45 mm/h is assumed to

Figure 20. The topographic map of the Haltwhistle Burn catchment and the locations of the gauges.

Figure 21. Hypothetic rainfall event on the Haltwhistle Burn catchment: water depth (in meters) predicted by the new model at t 5 1 h, t 5 2 h, t 5 5 h, and t 5 10 h.
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fall on the whole catchment for 2 h. The simulation is carried out for a total of 10 h starting from the begin-
ning of the rainfall. Most of the catchment is covered by pastures and so a constant Manning coefficient of
0.05 s m21=3 is used. Zero infiltration is assumed and open boundary conditions are imposed. The rectangu-
lar computational domain embracing the catchment is discretized by a uniform grid at a 5 m resolution,
leading to 4 million cells. During the simulation, water level is monitored at four gauges located along the
Haltwhistle Burn. The water depth simulated by the new ‘‘SRM’’ model is shown in Figure 21. The rainfall-
induced overland flow converges into the streams, river channels, and lower parts of the catchment, which
is as expected. Figure 22 presents the time histories of water depth recorded at the four gauges. In order to
compare numerical results, simulations are also carried out using alternative models (i.e., ‘‘George’’ and
‘‘HR’’). From the results, it is observed that ‘‘George’’ and ‘‘HR’’ perform more consistently than the SRM
model and both predict earlier arrival of the flood peaks. To better explain this, the Froude number of the
flow predicted by the ‘‘George’’ model is plotted in Figure 23 for t 5 2 h. The Froude number is relatively

small in almost the entire domain and
the flow is predominantly subcritical.
It has been concluded that George’s
Riemann solver tends to overestimate
the discharge on slopes when the
flow is subcritical and this obviously
explains the earlier arrival of flood
peaks. The early arrival of flood peaks
predicted by the ‘‘HR’’ model may be
explained by the overestimated dis-
charge caused by the ‘‘waterfall
effect’’ in this case. The cell size used
in the simulation is 5 m and the water
depth on the slopes is typically at an
order of 0.01 m. As a result, even a
gentle slope can lead to variation of
bed elevation between neighboring
cells larger than the water depth,
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Figure 22. Hypothetic rainfall event on the Haltwhistle Burn catchment: time histories of water depth at the four gauges.

Figure 23. Haltwhistle hypothetic flood: Froude number predicted by the model
with George’s Riemann solver at t 5 2 h.
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effectively causing the ‘‘waterfall
effect.’’ The ‘‘SRM’’ model as pre-
sented does not suffer from either
of these limitations and hence pre-
dicts later arrival of the flood peaks.
It is interesting to notice that
‘‘George’’ and ‘‘HR’’ models give sim-
ilar results although they both suffer

from certain limitations for overland flow simulations. In Appendix A, it is shown that for the simple steady
flow with uniform depth and velocity, the discharge given by the ‘‘HR’’ model is 1

3 hu1 2
3 h

ffiffiffiffiffiffi
gh

p
. The dis-

charge given by the ‘‘George’’ model is h
ffiffiffiffiffiffi
gh

p
if h < 1=23bi2bi11 is true, which is most likely the case in

this test. The difference between 1
3 hu1 2

3 h
ffiffiffiffiffiffi
gh

p
and h

ffiffiffiffiffiffi
gh

p
is indeed much smaller than the difference

between h
ffiffiffiffiffiffi
gh

p
and the true discharge hu. Although the analysis is rudimentary, the results in Figure 22 are

qualitatively in line with the mathematical analysis.

In order to compare their computational efficiency, the three different models are implemented in the
same GPU-accelerated code base and simulations are all carried out on a NVIDIA Tesla K40 GPU. Table 2
provides the quantitative comparison of the time step count and run time required by the three models.
The three different simulations need similar number of time steps to finish the whole simulation. Unlike the
urban rainfall experiment test previously considered, the ‘‘George’’ model does not require much more time
steps than the other two models because the time steps are more controlled by the largest water depth in
the river channels rather than the flow velocity for this specific case. In terms of run time, the new ‘‘SRM’’
model consumes 199 min to finish the 10 h simulation, about 40% more than the 137 min as required by
the ‘‘HR’’ model. The computational efficiency between the two models is therefore comparable and the
new SRM implementation does not necessarily lead to substantial increase of computational cost. On the
other hand, the ‘‘George’’ model is found to be nearly 3 times slower than the current SRM model due to
the complexity of the Riemann solver.

6. Conclusion

This paper discusses in detail the existing challenges encountered in overland flow simulations and pro-
poses new discretization schemes to deal with these challenges, and subsequently implement these new
schemes to devise a hydrodynamic overland flow model with much improved numerical accuracy and sta-
bility, as well as computational efficiency. The improved model has the following key features:

1. Through implementation of a novel surface reconstruction method (SRM), the current hydrodynamic
overland flow model is able to correctly compute the bed slope source terms in the limit of disappearing
water depth, maintain numerical stability for simulations over rough terrains with abrupt change of bed
profiles, and preserve the lake at rest solution with wetting and drying.

2. An implicit scheme is proposed to discretize the strongly nonlinear friction source terms, allowing correct
recovery of the theoretical equilibrium state of the shallow flows when water depth is small and friction
becomes dominant. This new implicit friction discretization scheme allows accurate and stable simula-
tions using ‘‘normal’’ time steps controlled by the CFL condition, effectively improving computational
efficiency.

3. When incorporating with a classic Riemann solver solving the homogeneous SWEs (e.g., the HLLC
approximate Riemann solver as adopted in this work), the new model is able to give correct prediction
of mass flux, i.e., unit discharge, on slopes in the limit of disappearing water depth.

These features are essential for accurate, stable, and efficient simulation of overland flows and flash floods
which usually involves very shallow water flowing downhill. Theoretical analysis and numerical simulations
show that certain models solving the SWEs, such as the hydrostatic reconstruction scheme [Audusse et al.,
2004] and the augmented Riemann solver [George, 2008], are not simultaneously equipped with all these
numerical features and therefore may not be able to accurately simulate overland flows.

The overland flow and surface flood model developed in this work resolves the aforementioned numerical
challenges and has all of the above positive features in a single code base. The model is validated against
several test cases and produced numerical results that agree closely with analytical solutions or

Table 2. Hypothetic Rainfall Event on the Haltwhistle Burn Catchment: Time Steps
Count and Total Run Time for Three Simulations

Model Name Time Steps Count Total Run Time (min)

George 154,744 595
HR 151,034 137
SRM 151,089 199
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experimental measurements. The stability and efficiency of the current model has been further demon-
strated by simulating a hypothetic rainfall event in the Haltwhistle Burn catchment.

The proposed new discretization schemes are easy to implement and independent of the Riemann solver
being used and provide great flexibility for the users to develop or improve their own models. Although
the current model is developed and tested on uniform Cartesian grids, the overall mathematical and
numerical framework is compatible with and can be extended readily to other types of grids, e.g., unstruc-
tured grids.

Appendix A: Overestimation of Mass Flux by Hydrostatic Reconstruction and
George’s Riemann Solver

A1. Overestimation of Mass Flux Due to the ‘‘Waterfall’’ Effect
In this paper, the HLLC Riemann solver [Toro, 2001] is adopted, which is summarized as below. Taking the x
direction flux f as an example, the HLLC Riemann solver gives

f5

fL 0 	 SL

f�L SL 	 0 	 SM

f�R SM 	 0 	 SR

fR SR 	 0

8>>>>><
>>>>>:

(A1)

in which fL5fðqLÞ and fR5fðqRÞ are calculated from the left and right Riemann states and SL, SR, and SM the
are characteristic wave speeds. f�L and f�R are the fluxes in the left and right middle regions of the HLLC
solution structure, calculated as

f�L5

f�1

f�2

vLf�1

2
664

3
775f�R5

f�1

f�2

vRf�1

2
664

3
775 (A2)

with the HLL fluxes f� provided by the following formula

f�5
SRfL2SLfR1SLSRðqR2qLÞ

SR2SL
(A3)

The formulae for the left and right characteristic wave speeds SL and SR are

SL5
uR22

ffiffiffiffiffiffiffiffi
ghR

p
hL50
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ffiffiffiffiffiffiffi
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p
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p
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ffiffiffiffiffiffiffi
ghL

p
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p
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(A7)

The middle characteristic wave speed SM is calculated as

SM5
SLhRðuR2SRÞ2SRhLðuL2SLÞ

hRðuR2SRÞ2hLðuL2SLÞ
(A8)

We assume that the left-hand side bed elevation is higher than the right-hand side water level at the cell
interface under consideration. The left and right Riemann states after hydrostatic reconstruction are (hL,
huL) and (0, 0,) respectively. Further assuming that the flow is subcritical, the mass flux given by the HLLC
Riemann solver can be obtained as 1

3 huL1
2
3 hL

ffiffiffiffiffiffiffi
ghL

p
by substituting the Riemann states into (A1)–(A8).
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A2. Overestimation of Mass Flux by George’s Riemann Solver in Subcritical Flow Conditions
LeVeque [1997] defined the following relationship between the mass fluctuations and mass fluxes:

A2DHi11=25Fh
i11=22hui (A9)

A1DHi11=25hui112Fh
i11=2 (A10)

where Fh
i11=2 is the mass flux across the cell interface with clear physical meanings, both sides of (A9) and

(A10) represent the changing rate of mass at the half-cell ½xi; xi11
2
� and ½xi11

2
; xi�, respectively. Then the cell

interface mass flux can be expressed by the mass fluctuations as

Fh
i11=25A2DHi11=21hui (A11)

or

Fh
i11=25hui112A1DHi11=2 (A12)

Both (A11) and (A12) are true because the fluctuations must satisfy

A2DHi11=21A1DHi11=25hui112hui (A13)

to ensure mass conservation [see George, 2008]. (A11) and (A12) are also applicable to the augmented Rie-
mann solver in George [2008] because no specific form of fluctuations is assumed.

Now we prove that A2DHi11=2 > 0 providing that the following conditions are satisfiedffiffiffiffiffiffi
gh

p
> u > 0 ; h5const ; u5const and bi > bi11 (A14)

Proof of the above statement simply needs to follow the solution procedure described in George [2008] but
requires a substantial amount of algebraic manipulations and is rather lengthy. Therefore, we summarize
the key steps here and some of the equations we used here can be found in George [2008]. For better refer-
ence, from now on we follow the notations as used in George [2008].

Proof:

Considering the conditions given in (A14), the following is obviously true

Hi112Hi

HUi112HUi

/ðQi11Þ2/ðQiÞ

Bi112Bi

2
666664

3
7777755

0

0

0

Bi112Bi

2
666664

3
777775 (A15)

From George [2008, equations (35a)–(35c)], we can obtain that

fw1
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s0
i11=2 is always 0. For w0

i11=2, there are two possibilities: the first possibility is that ðw0
i11=2Þ

1 calculated from
George [2008, equation (41)] reaches the lower bound in George [2008, equation (49)] (note that the upper
bound is always satisfied in our condition). Then the following is obtained

w0
i11=25ð 2H

ffiffiffiffiffiffi
gH
p

ðU1
ffiffiffiffiffiffi
gH
p
ÞðBi112BiÞ

; 0;2gH; 1ÞT (A19)

Another possibility is that ðw0
i11=2Þ

1 calculated from George [2008, equation (41)] does not reach the lower
bound in George [2008, equation (49)]. Then we can obtain that

w0
i11=25

�
gH

U22gH
; 0;2gH; 1

�T

(A20)

If (A19) is true, after solving the matrix in George [2008, equation (29)], which reads
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we can obtain
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After applying George [2008, equation (30), equation (23a)], which respectively reads

Zp
i11=25½0231 I232 0231�ap

i11=2wp
i11=2 (A23)

and

A2DQ111=25
X

p:sp
i11=2

<0

Zp
i11=2 (A24)

we can obtain

A2DQ111=25fHð
ffiffiffiffiffiffi
gH

p
2UÞ;2Hð

ffiffiffiffiffiffi
gH

p
2UÞ2gT (A25)

Similarly, if (A20) is true, we can obtain

A2DQ111=25f2 1
2
ðBi112BiÞ
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;2
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2
ðBi112BiÞðU2
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p
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In both cases, it is trivial to prove that the first component of A2DQ111=2, i.e., A2DH111=2 is positive.
We may also prove that A2DH111=2 is always the smallest possible value between (A25) and (A26). Conse-
quently, A2DH111=2 is always the value given in (A25) if

H <
1
2
ðBi2Bi11Þ (A27)

In such a condition, the mass flux across the cell interface is Hð
ffiffiffiffiffiffi
gH
p

2UÞ1HU5H
ffiffiffiffiffiffi
gH
p

, which is close to the
mass flux predicted by the hydrostatic reconstruction method in the presence of the ‘‘waterfall effect.’’ It is
also noteworthy that (A27) is similar to the condition under which the ‘‘waterfall effect’’ occurs.
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