289 research outputs found

    Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content.

    Get PDF
    A constellation of metabolic disorders, including obesity, dysregulated lipids, and elevations in blood glucose levels, has been associated with cardiovascular disease and diabetes. Analysis of data from recently published genome-wide association studies (GWAS) demonstrated that reduced-function polymorphisms in the organic cation transporter, OCT1 (SLC22A1), are significantly associated with higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels and an increased risk for type 2 diabetes mellitus, yet the mechanism linking OCT1 to these metabolic traits remains puzzling. Here, we show that OCT1, widely characterized as a drug transporter, plays a key role in modulating hepatic glucose and lipid metabolism, potentially by mediating thiamine (vitamin B1) uptake and hence its levels in the liver. Deletion of Oct1 in mice resulted in reduced activity of thiamine-dependent enzymes, including pyruvate dehydrogenase (PDH), which disrupted the hepatic glucose-fatty acid cycle and shifted the source of energy production from glucose to fatty acids, leading to a reduction in glucose utilization, increased gluconeogenesis, and altered lipid metabolism. In turn, these effects resulted in increased total body adiposity and systemic levels of glucose and lipids. Importantly, wild-type mice on thiamine deficient diets (TDs) exhibited impaired glucose metabolism that phenocopied Oct1 deficient mice. Collectively, our study reveals a critical role of hepatic thiamine deficiency through OCT1 deficiency in promoting the metabolic inflexibility that leads to the pathogenesis of cardiometabolic disease

    Impact of \u3cem\u3eMYH6\u3c/em\u3e Variants in Hypoplastic Left Heart Syndrome

    Get PDF
    Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease (CHD). Although prior studies suggest that HLHS has a complex genetic inheritance, its etiology remains largely unknown. The goal of this study was to characterize a risk gene in HLHS and its effect on HLHS etiology and outcome. We performed next-generation sequencing on a multigenerational family with a high prevalence of CHD/HLHS, identifying a rare variant in the α-myosin heavy chain (MYH6) gene. A case-control study of 190 unrelated HLHS subjects was then performed and compared with the 1000 Genomes Project. Damaging MYH6 variants, including novel, missense, in-frame deletion, premature stop, de novo, and compound heterozygous variants, were significantly enriched in HLHS cases (P \u3c 1 × 10−5). Clinical outcomes analysis showed reduced transplant-free survival in HLHS subjects with damaging MYH6 variants (P \u3c 1 × 10−2). Transcriptome and protein expression analyses with cardiac tissue revealed differential expression of cardiac contractility genes, notably upregulation of the β-myosin heavy chain (MYH7) gene in subjects with MYH6 variants (P \u3c 1 × 10−3). We subsequently used patient-specific induced pluripotent stem cells (iPSCs) to model HLHS in vitro. Early stages of in vitro cardiomyogenesis in iPSCs derived from two unrelated HLHS families mimicked the increased expression of MYH7 observed in vivo (P \u3c 1 × 10−2), while revealing defective cardiomyogenic differentiation. Rare, damaging variants in MYH6 are enriched in HLHS, affect molecular expression of contractility genes, and are predictive of poor outcome. These findings indicate that the etiology of MYH6-associated HLHS can be informed using iPSCs and suggest utility in future clinical applications

    Al0.5Nb1.5(PO4)3

    Get PDF
    Single crystals of the title compound, aluminium niobium triphosphate, Al0.5Nb1.5(PO4)3, have been synthesized by a high-temperature reaction in a platinium crucible. The AlIII and NbV atoms occupy the same site on the axis, with disorder in the ratio of 1:3. The fundamental building units of the title structure are isolated Al/NbO6 octa­hedra and PO4 tetra­hedra (. 2 symmetry), which are further inter­locked by corner-sharing O atoms, leading to a three-dimensional framework structure with infinite channels along the a axis

    The Effects of Velvet Antler of Deer on Cardiac Functions of Rats with Heart Failure following Myocardial Infarction

    Get PDF
    Velvet antler of deer (VAD) is a commonly-used kidney-Yang supplementing traditional Chinese medication. According to the heart-kidney-related theory, heart Yang originates in kidney Yang and heart failure due to heart Yang deficiency can be treated by tonifying kidney Yang. In this study, we investigated therapeutic effects of VAD on cardiac functions in rats with heart failure following myocardial infarction. Forty-eight male Wistar rats were subjected either to left coronary artery ligation (N = 36) or to sham operation (N = 12). One week after the surgery, rats with heart failure received daily treatment of double-distilled water, captopril or VAD by gavage for consecutively four weeks, while sham-operated animals were given double-distilled water. Ultrasonic echocardiography was adopted to examine cardiac structural and functional parameters and serum brain natriuretic peptide (BNP) concentration was measured using radioimmunoassay. We found that VAD partially reversed changes in cardiac functional parameters and serum BNP levels in rats with heart failure. These results provide further evidence for the heart-kidney-related theory and suggest that VAD might be a potentially alternative and complementary medicine for the treatment of heart failure

    Clinical and Experimental Applications of NIR-LED Photobiomodulation

    Get PDF
    This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as “photobiomodulation,” uses light in the far-red to near-infrared region of the spectrum (630–1000 nm) and modulates numerous cellular functions. Positive effects of NIR–light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction

    3D-bioprinting of patient-derived cardiac tissue models for studying congenital heart disease.

    Get PDF
    INTRODUCTION: Congenital heart disease is the leading cause of death related to birth defects and affects 1 out of every 100 live births. Induced pluripotent stem cell technology has allowed for patient-derived cardiomyocytes to be studied in vitro. An approach to bioengineer these cells into a physiologically accurate cardiac tissue model is needed in order to study the disease and evaluate potential treatment strategies. METHODS: To accomplish this, we have developed a protocol to 3D-bioprint cardiac tissue constructs comprised of patient-derived cardiomyocytes within a hydrogel bioink based on laminin-521. RESULTS: Cardiomyocytes remained viable and demonstrated appropriate phenotype and function including spontaneous contraction. Contraction remained consistent during 30 days of culture based on displacement measurements. Furthermore, tissue constructs demonstrated progressive maturation based on sarcomere structure and gene expression analysis. Gene expression analysis also revealed enhanced maturation in 3D constructs compared to 2D cell culture. DISCUSSION: This combination of patient-derived cardiomyocytes and 3D-bioprinting represents a promising platform for studying congenital heart disease and evaluating individualized treatment strategies
    • …
    corecore