24 research outputs found
Multi-Modal Medical Imaging Analysis with Modern Neural Networks
Medical imaging is an important non-invasive tool for diagnostic and treatment purposes in medical practice. However, interpreting medical images is a time consuming and challenging task. Computer-aided diagnosis (CAD) tools have been used in clinical practice to assist medical practitioners in medical imaging analysis since the 1990s. Most of the current generation of CADs are built on conventional computer vision techniques, such as manually defined feature descriptors. Deep convolutional neural networks (CNNs) provide robust end-to-end methods that can automatically learn feature representations. CNNs are a promising building block of next-generation CADs. However, applying CNNs to medical imaging analysis tasks is challenging. This dissertation addresses three major issues that obstruct utilizing modern deep neural networks on medical image analysis tasks---lack of domain knowledge in architecture design, lack of labeled data in model training, and lack of uncertainty estimation in deep neural networks. We evaluated the proposed methods on six large, clinically-relevant datasets. The result shows that the proposed methods can significantly improve the deep neural network performance on medical imaging analysis tasks
Pedestrian Detection Using Basic Polyline: A Geometric Framework for Pedestrian Detection
Pedestrian detection has been an active research area for computer vision in recently years. It has many applications that could improve our lives, such as video surveillance security, auto-driving assistance systems, etc. The approaches of pedestrian detection could be roughly categorized into two categories, shape-based approaches and appearance-based approaches. In the literature, most of approaches are appearance-based. Shape-based approaches are usually integrated with an appearance-based approach to speed up a detection process.
In this thesis, I propose a shape-based pedestrian detection framework using the geometric features of human to detect pedestrians. This framework includes three main steps. Give a static image, i) generating the edge image of the given image, ii) according to the edge image, extracting the basic polylines, and iii) using the geometric relationships among the polylines to detect pedestrians.
The detection result obtained by the proposed framework is promising. There was a comparison made of this proposed framework with the algorithm which introduced by Dalal and Triggs [7]. This proposed algorithm increased the true-positive detection result by 47.67%, and reduced the false-positive detection number by 41.42%
Improving Pneumonia Classification and Lesion Detection Using Spatial Attention Superposition and Multilayer Feature Fusion
Pneumonia is a severe inflammation of the lung that could cause serious complications. Chest X-rays (CXRs) are commonly used to make a diagnosis of pneumonia. In this paper, we propose a deep-learning-based method with spatial attention superposition (SAS) and multilayer feature fusion (MFF) to facilitate pneumonia diagnosis based on CXRs. Specifically, an SAS module, which takes advantage of the channel and spatial attention mechanisms, was designed to identify intrinsic imaging features of pneumonia-related lesions and their locations, and an MFF module was designed to harmonize disparate features from different channels and emphasize important information. These two modules were concatenated to extract critical image features serving as the basis for pneumonia diagnosis. We further embedded the proposed modules into a baseline neural network and developed a model called SAS-MFF-YOLO to diagnose pneumonia. To validate the effectiveness of our model, extensive experiments were conducted on two CXR datasets provided by the Radiological Society of North America (RSNA) and the AI Research Institute. SAS-MFF-YOLO achieved a precision of 88.1%, a recall of 98.2% for pneumonia classification and an AP50 of 99% for lesion detection on the AI Research Institute dataset. The visualization of intermediate feature maps showed that our method could facilitate uncovering pneumonia-related lesions in CXRs. Our results demonstrated that our approach could be used to enhance the performance of the overall pneumonia detection on CXR imaging
ESSM: An Extractive Summarization Model with Enhanced Spatial-Temporal Information and Span Mask Encoding
Extractive reading comprehension is to extract consecutive subsequences from a given article to answer the given question. Previous work often adopted Byte Pair Encoding (BPE) that could cause semantically correlated words to be separated. Also, previous features extraction strategy cannot effectively capture the global semantic information. In this paper, an extractive summarization model is proposed with enhanced spatial-temporal information and span mask encoding (ESSM) to promote global semantic information. ESSM utilizes Embedding Layer to reduce semantic segmentation of correlated words, and adopts TemporalConvNet Layer to relief the loss of feature information. The model can also deal with unanswerable questions. To verify the effectiveness of the model, experiments on datasets SQuAD1.1 and SQuAD2.0 are conducted. Our model achieved an EM of 86.31% and a F1 score of 92.49% on SQuAD1.1 and the numbers are 80.54% and 83.27% for SQuAD2.0. It was proved that the model is effective for extractive QA task
Dynamic Image for 3D MRI Image Alzheimer's Disease Classification
We propose to apply a 2D CNN architecture to 3D MRI image Alzheimer's disease
classification. Training a 3D convolutional neural network (CNN) is
time-consuming and computationally expensive. We make use of approximate rank
pooling to transform the 3D MRI image volume into a 2D image to use as input to
a 2D CNN. We show our proposed CNN model achieves better Alzheimer's
disease classification accuracy than the baseline 3D models. We also show that
our method allows for efficient training, requiring only 20% of the training
time compared to 3D CNN models. The code is available online:
https://github.com/UkyVision/alzheimer-project.Comment: Accepted to ECCV2020 Workshop on BioImage Computin