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Pedestrian detection has been an active research area for computer vision in 

recently years. It has many applications that could improve our lives, such as video 

surveillance security, auto-driving assistance systems, etc. The approaches of pedestrian 

detection could be roughly categorized into two categories, shape-based approaches and 

appearance-based approaches. In the literature, most of approaches are appearance-

based. Shape-based approaches are usually integrated with an appearance-based 

approach to speed up a detection process. 

In this thesis, I propose a shape-based pedestrian detection framework using the 

geometric features of human to detect pedestrians. This framework includes three main 

steps. Give a static image, i) generating the edge image of the given image, ii) according 

to the edge image, extracting the basic polylines, and iii) using the geometric 

relationships among the polylines to detect pedestrians. 

The detection result obtained by the proposed framework is promising. There 

was a comparison made of this proposed framework with the algorithm which 

introduced by Dalal and Triggs [7]. This proposed algorithm increased the true-positive 

detection result by 47.67%, and reduced the false-positive detection number by 41.42%.  
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Chapter 1. Introduction 

Nowadays, machines are becoming more and more important to people’s daily 

life. How to empower a machine with the ability to interact with people is one of the 

most interesting and practical challenges for scientists and engineers. In order to interact 

with people in motion, machines are expected to have computer vision. Object detection 

and recognition has been an active research area in computer vision, and pedestrian 

detection or people detection is an important topic in the area of object detection. 

Automatic pedestrian detection has many applications including video surveillance 

security, auto-driving assistance systems, etc. For example, studies showed that 4,735 of 

32,719 annual traffic crash fatalities involve pedestrians in the United States in 2013 

[50]. The large number of traffic crash fatalities involving pedestrians an important 

motivation to build an auto-driving assistance system with the ability of detecting 

pedestrians [17].  

In the literature, there are two basic types of schemes for automatic pedestrian 

detection. One scheme is based on exhaustive scanning of an input image under different 

scales with a sliding window; the other scheme is based on hypotheses by evidence. The 

following is a list of well-known pedestrian detection methods: shape context detection 

[15, 29, 30, 40], searching of particular patterns or body parts [5, 27, 28, 12], stereo 

vision and neural networks detection [43, 3, 10, 16, 20], global Chamfer matching 

detection [14, 21, 25, 36], detection using Haar wavelet and Haar-like wavelet [32, 17, 

43,45], detection using the Histogram of Oriented Gradients feature [7, 8, 39, 44, 47], 
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detection using more than one well-known methods [42, 34, 38, 17], using general 

methodology of body plans [12], etc. 

In this thesis, I propose a pedestrian detection framework that can detect 

pedestrians in static scenes, i.e., without motion input. It does not involve a training step 

either. The proposed pedestrian detection framework is based on geometric features of 

pedestrians that are designed upon 1-piece polylines, i.e., line segments. Pedestrians may 

have various appearances, under different lighting conditions, clothing styles, and poses. 

Some basic geometric features, such as the head-height ratio of a person, the distance 

from hip joint to shoulder, however, remain the same under different appearances. 

Existing pedestrian detection methods usually apply a learning process based on a large 

set of training images that cover various appearances of pedestrians and non-pedestrian 

objects/scenes to address this issue. This proposed framework is thus complementary to 

learning-based detection methods, and it may be integrated with the latter ones to reduce 

the search space and thus the computational cost [24]. 

In the proposed framework, we first generate an edge image of the input image, 

then extract the 1-piece polylines from the edge image using the extraction method 

introduced in [24]. Next, for each vertical polyline, we detect whether there is a parallel 

polyline existing within in certain distance. If a parallel polyline exists, we assume the 

vertical polyline is a potential leg. We generate several hypothesis boxes for each 

potential leg according to our pre-built models. At last, we apply different constraints to 

filter out the objects other than pedestrian.  

The detection result obtained by the proposed framework is promising. I made a 

comparison of this proposed framework with Dalal and Triggs’ algorithm. According to 
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the comparison, the true-positive detection rate of Dalal and Triggs’ algorithm is 

29.97%, and for mine is 44.25%, which increase the rate of Dala and Triggs’ algorithm 

by 47.67%. The number of false-positives is reduces by 41.42%. See section 7.1 and 7.2 

for comparison details.  
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Chapter 2. Related Work 

 Various approaches of pedestrian detection have been proposed in the literature. 

The approaches could be roughly categorized as shape-based approaches and 

appearance-based approaches. Most of approaches in the literature of pedestrian 

detection are appearance-based. Shape-based approaches are usually integrated with an 

appearance-based approach to speed up a detection process. 

 A shape-based pedestrian detection approach relies on the search for the specific 

characteristics of pedestrians, which might include vertical symmetry and strong 

presence of edges. In a shape-based pedestrian detector, pedestrians are more than likely 

to be discovered through human beings’ strong vertical symmetry shape in the detected 

area, even including the people who have different poses, wear different clothing, and 

people on the move. Gavrila proposed a distance transform based shape matching 

approach to reduce the brute-force search space of candidate regions of pedestrians [14]. 

An appearance-based pedestrian detection approach generally applies a classifier, 

such as a linear/kernelSVM, AdaBoost, Radial Basis Functions (RBFs), etc., to  

appearance features. Gavrila applied a RBF classifier to a rich set of intensity features 

[14]; Papageorgiou et al. applied linear SVM to Haar wavelet coefficients [32, 31]; Dalal 

and Triggs applied linear SVM to the Histogram of Oriented Gradients (HOG) features 

[7]; Sabzmeydani and Mori proposed the so-called shapelet features that are a set of 

mid-level features and are created as a combination of oriented gradient response by 

AdaBoost [35]; Mohan et al. proposed a two-stage hierachical classification scheme 

called Adaptive Combination of Classifiers (ACC) [28]. In Stage 1, four distinct 



 5 

classifiers are constructed with respect to four body components (the head, legs, left 

arm, and right arm) and a predefined pedestrian shape model is applied to ensure the 

four detected body components are in the proper geometric configuration; In Stage 2, a 

classifier is constructed with respect to the combination (i.e., concatenation) of four 

body components [28]. Mikolajczyk et al. proposed a three-stage scheme for pedestrian 

detection [27]. In Stage 1, orientation features in multi scales are detected and grouped; 

In Stage 2, seven distinct classifiers are constructed with respect to seven body part; In 

Stage 3, a joint Probabilistic model is applied to the Assembly of detected body parts 

[27].  

In the following section, several frequently used features in pedestrian detection 

are explained in detail. 

2.1 Haar wavelet 

Wavelet is a natural mathematical structure that provides description of patterns 

[25]. Haar wavelet is a popular method that is used for pedestrian detection such as [31, 

32]. According to Papgeorgiou and Poggio [32], it was the first people detection system 

described in the literature that does not rely on motion, tracking, background subtraction, 

or any other assumptions on the scene structure. Haar wavelets are able to identify 

locally oriented intensity difference features at different scales and are also efficiently 

computable [32]. 

Papageorgiou and Poggio proposed the Haar wavelet feature detection in [32]. 

The study introduced a dense overcomplete representation using wavelets, which were at 

the scale of 16 and 32 pixel and were 75 % overlapped. Low frequency changes in 

contrast, including vertical, horizontal, and diagonal, can be encoded by using three 
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different types. Therefore, the feature vector for a 64 : 128 pixel detection window was 

1326 dimension long. Only the maximum response was used to cope with lighting 

differences for each color channel. Based on the window’s mean response for each 

direction, normalization of each direction was preformed. Additionally, because of 

clothing differences, according to the authors, there was no information in the class of 

people the wavelet coefficient’s sign. Thus, the authors only retained the absolute values 

for each coefficient. 

2.2 Histogram of Oriented Gradients 

Since the local object appearance and shape can be characterized by the 

distribution of local intensity gradients, Dalal and Triggs introduced a pedestrian 

detection algorithm according to the Histogram of Oriented Gradients [7]. The 

fundamental idea was that by dividing image into small cells, accumulating a local 1-D 

histogram of gradient directions over the pixels of each cell, and then accumulating a 

measure of local histogram over some larger spatial blocks, the result could be used to 

normalize all the cells in the particular blocks, which were Histogram of Oriented 

Gradient (HOG) descriptors [7]. 

In [7], Dalal and Triggs introduced the HOG feature detection in details in their 

study. Centered differences in x- and y- direction were used to compute image 

derivatives. The 8 by 8 pixel cell histograms were formed and inserted by the gradient 

magnitude, which interpolate in x, y and orientation. Each block contained 2 : 2 cells, 

and each cell was overlapped by one cell in each direction. An additional hysteresis step 

was used to normalize the L2 long blocks to avoid the domination of the feature vector of 
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one gradient entry. The resulting final vector contains all normalized block histograms, 

with a total dimension of 3780 for a 64 : 128 detection window. 

2.3 Global Chamfer Matching 

The global chamfer matching detection method matches object shape silhouettes 

with image structure. A silhouette will be shifted over into an image. A distance between 

a silhouette and the edge image at each image location will be calculated, based on a 

distance transform that was computed for each image pixel the distance to the nearest 

feature pixel. The lower the distances were, the better the matching of the image and the 

silhouette was.  

According to Gavrila, the foundation of the above system largely relied on shape 

matching using distance transform (DT). Various pedestrian appearances were modeled 

with silhouette templates. To Match a template T and an image I, steps of computing the 

feature image of I and applying a DT to obtain a DT-image were involved. A variety of 

DT algorithms were existing. The Chamfer transform is one of them, which computes an 

approximation of the Euclidean distance using integer arithmetic. After computing the 

DT, the relevant template T is transferred over the DT-image of I. The pixel values of 

the DT-image which lie under the pixels of the transformed template would determine 

the matching measure D(T, I). The lower distance means the better matching between 

the image and template at this location [14].  

2.4 Shapelets 

 The term of shapelet was coined by Refreiger in [33], which was used to name a 

series of localized basis functions for different shapes. Later, in [21] Kovesi applied this 
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term on referring a basis of finite support for describing shape. Sabzmeydani and Mori’s 

introduced a learning algorithm using shapelet features to discriminate between 

pedestrians and non-pedestrians in [35]. They believed that the most important cue for 

pedestrians detection in static image would be the shape, especially the pieces of shape 

like the stereotypical omega pattern formed by head and shoulder of a pedestrian [35]. 

Their algorithm contains three steps: 

1. Low-level Features: In each image, they extracted the gradient 

responses of different directions and then computed the local average 

of those responses around pixels. These low-level gradients were used 

to build shapelets.  

2. Shapelet Features: They used Adaboost to select a subset of the low-

level features to generate the shapelet feature in each of sub-windows 

in the detection window. The shaplet features consisted of the 

combination of gradients with different orientations and strengths at 

different locations inside sub-windows. 

3. Final Classifier: The shapelet features could only describe local 

neighborhoods of an image; therefore the classification power was not 

strong enough. So, they applied AdaBoost again to train the final 

classifier, which used shapelet features as the input. 

2.5 Shape Context 

 Shape Context was originally proposed in [1]. It has shown admirable potential 

on pedestrian detection using ISM framework [23, 37]. Belongie and Malik used the 

following words to introduce the idea of shape matching and object recognition using 
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shape context: “Regarded as vectors of pixel brightness values and compared using L2 

norms, they are [Figure 1] very different. However, regarded as shapes they appear 

rather similar to a human observer. Our objective in this paper is to operationalize this 

notion of shape similarity, with the ultimate goal of using it as a basic for category-level 

recognition [1].” The recognition goal that was mentioned in the statement was able to 

be achieved by using shape context according to Belongie and Malik.  

In [1], Belongie and Malik defined that shape context is a shape descriptor that is 

used to describe the distribution of a point to rest points of the shape with respect to the 

given point. The problem of recognizing the similarity of two shapes could be 

transferred to the recognition of the correspondences between points on two shapes. A 

descriptor, shape context, is given to each point of the two similar shapes, of which the 

corresponding points should have the similar shape contexts. 

                                                 

1 The examples were borrowed from the work of Belongie et al. [1]. 

1 

Figure 1. Two handwritten digits. 
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Chapter 3. Basic Framework  

The pedestrian detection framework that is proposed in this thesis uses the 

geometric features of humans to detection pedestrians using basic polylines. It contains 

three main steps: i) edge detection, ii) 1-piece polylines extraction, and iii) generation of 

hypothesis boxes. 

Edge detection is the first step of this framework. This step generates the edge 

image of an input image under multiple scales. There are many existing edge detectors 

that can be used for this purpose. We choose the Canny edge detector because it is one 

of the most commonly used edge detection algorithms in a wide range of applications.  

The second step is the extraction of 1-piece polylines (in this thesis also called 

basic polylines) based on the edge image. The basic polylines extraction process could 

be done by three steps: i) dominant points detection, ii) piecewise linearity verification, 

and iii) partitioning. (Details are presented in Chapter 4.) 

The last step of the proposed framework  applies geometric relationships of the 

1-piece polylines to detect pedestrian candidate regions. Specifically, we first generate 

hypothesis boxes for each vertical 1-piece polylines if there is a parallel vertical line 

existing within certain distance of the vertical basic polyline. Some adjustments might 

be needed after the hypothesis boxes generation, such as amplifying or shrinking the 

boxes, finding the best location of the box, etc. Finally we apply different constraints to 

those hypothesis boxes to eliminate the hypothesis boxes that do not contain pedestrians 

according to the geometry features of humans. Figure 2 illustrates the proposed 

framework. 
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Figure 2 The proposed framework. 



 12 

Chapter 4. Extraction of 1-Piece Polylines 

In [24], we proposed the polylines extraction scheme for 1-/2-piece polylines. 

For this proposed pedestrian detection framework, we only used 1-piece polylines 

technique. 2-piece polylines might be added in the future. The explanation of the three 

consecutive steps of 1-piece polylines extraction follows. 

4.1 Dominant Point Detection 

Dominant points are the special points in a connected component. A non-linear 

connected component should have three dominant points. A linear connected 

component, however, will only have two dominate points. 

Given a connected component P, denote v1 and v2 a pair of points in P such that 

their Euclidean distance is the maximum among all possible pairs of points, e.g., 

(𝑣1, 𝑣2) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑝𝑖≠𝑝𝑗
‖𝑝𝑖 − 𝑝𝑗‖, 

where ‖•‖ denotes the 2-norm of a vector. v1 and v2 are then considered as the end 

points of the dominant axis of P, and thus two dominant points. 

Then, we compute the third dominate point v3 of P by maximizing the sum of the 

distance between p and v1 and the distance between p and v2, i.e., 

𝑣3 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈𝑃−{𝑣1,𝑣2}(‖𝑝 − 𝑣1‖ + ‖𝑝 − 𝑣2‖). 

If P is a straight-line segment, every 𝑝 ∈ 𝑃 has the property that ‖𝑝 − 𝑣1‖ + ‖𝑝 − 𝑣2‖ is 

a constant, i.e., ‖𝑣1 − 𝑣2‖. 

 For instance, in Figure 3, p1, p2, and p3 are three arbitrary points in the connected 

component. Since the distance between p1 and p2 is the largest among the distances of 
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any other two points of the connected component, we say p1 and p2 are the first and 

second dominate points for the connected component. The point p3 is the third dominate 

point because the sum of the p1p3 and p2p3 is the larger than the sum of distances from 

any other points to p1 and p2. 

4.2 Piecewise Linearity Verification 

Given a connected component P, after three dominant points are found, we will 

then verify the piecewise linearity of the connected component. Specifically, given a 

point p and two vertices v1 and v2, we compute the distance from p to the line segment 

v1v2 by 

𝑑𝑖𝑠𝑡(𝑝, 𝑣1, 𝑣1) =  |(𝑝 − 𝑣1) ∙
𝑣2−𝑣1

‖𝑣2−𝑣1‖

⊥
|. 

where ∙ is the dot produce, and (𝑎, 𝑏)⊥ is defined as (−𝑏, 𝑎). Given three vertices v1, v2, 

and v3, we call p on the boundary of a triangle or an inlier if 

min{𝑑𝑖𝑠𝑡(𝑝, 𝑣1𝑣2), 𝑑𝑖𝑠𝑡(𝑝, 𝑣1𝑣3), 𝑑𝑖𝑠𝑡(𝑣2𝑣3)} ≤ 𝜖, 

where 𝜖 is the displacement threshold (in pixel unit). In this framework, we use 2 pixels 

as the displacement threshold to verify linearity. 

4.3 Partitioning 

After linearity verification, if a connected component fails the verification, 

meaning that the connected component is not a straight-line segment, we need to apply 

partitioning on the connected component. In our proposed pedestrian detection 

framework, we simply have three potential partitioning lines, v1v2, v1v3, and v2v3. Then, 

we use balancing, b, as the criteria to select the official partitioning line. 
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First, we apply three partitions with respect to the three partitioning lines. For 

each partition, we save the pixels on one side of the line in C1 and the other the pixels on 

the other side of the line in C2. Next, for each partitioning line, we computer the 

balancing by  

𝑏 =
min (𝐶1,𝐶2)

max (𝐶1,𝐶2)
. 

Finally, we select the partitioning line with maxima value of balancing b as our 

partitioning line to partition the connected component.  

 For instance, according to the dominant points, which are detected in Figure 3, 

we can have three partitioning lines, p1p2, p1p3, and p2p3. Since the balancing value of 

p1p2 is much closer to 1 than other two, which means that it has the maxima value of 

balancing among the three partitioning lines, line p1p2 will be chosen as the partitioning 

line for this connected component. (See Figure 3) 

                   

Figure 3 Dominant points detection and connected component partitioning 
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Chapter 5. Pedestrian Detection 

Pedestrians usually have some distinguishing geometric features, which makes 

pedestrians distinguishable from other objects that we can see on streets, such as high 

symmetry in front view and profile view, similar body proportions among different 

people, and parallel or symmetric edges for legs and arms. In this proposed geometric 

pedestrian detection framework, we will take advantages of these kinds of features.  

The basic pedestrian detection includes the following tasks: i) hypothesis box 

generation, ii) hypothesis box modification and localization, iii) hypothesis box filtration 

according to predefined constraints, and iv) hypothesis boxes output selection. 

5.1 Hypothesis Box Generation 

Hypothesis boxes are the core objects for this proposed framework. A hypothesis 

box is similar to a bounding box, which is widely used to bind an object, with only one 

difference between them. For every bounding box, it must bind at least one object inside 

the box. Hypothesis box, on the other hand, may or may not contain any objects inside 

it. In this framework, hypothesis boxes are generated for every vertical 1-piece polylines 

if the polyline has a parallel basic polyline existing within certain distance. If a 

hypothesis box satisfies all the constraints, it might be outputted as the bounding box 

that is used to bind the detected pedestrian. 

For each vertical 1-piece polyline, l, which are extracted in the previously step, 

two kinds of hypothesis boxes will be generated. One type of hypothesis boxes, hb1, 

suggests that the polyline l is one edge of a leg or a portion of a leg in the front view of a 
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pedestrian. The other type of hypothesis box, hb2, assumes that polyline l is one edge of 

a leg or a portion of a leg in a profile view of a pedestrian.  

The size of hb1 is initial as 2.2l : 0.55l. The size of hb2 is initial as 2l : 1.5l. 

Usually the leg-to-height ratio of an adult is 1:2 [4]. However, for different people, the 

leg-to-height ratio might be various, but the differences should not be large. We initially 

make an assumption that the polyline l is an edge of a leg. If the assumption is true, the 

height of this pedestrian should be 2l. Since in the real word the ratio maybe various, we 

lengthen the height by 10% to 2.2l. The leg-to-width ratio usually is around 1:0.5, 

according to [4]. For the same reason with the leg-to-height ratio, we widen the width of 

leg by 10% to make the leg-to-width ratio to 1:0.55. Then, we got the initial hypothesis 

box size of a pedestrian’s front view, which is 2.2l : 0.55l.  

The hypothesis boxes of profile view are generated based on the same theory. 

The maximum width of any person in profile view and front view is the person with 

open arms. According to Leonardo da Vinci’s Vitruvian Man [6], the background of 

Figure 4, the width of a person with open arms equals to the height of the person. Let us 

assume the length of leg is l, and the height of this person equals to 2l; therefore, the 

maximum width of this person in any situation should be no wider than 2l. As we all 

know, when a pedestrian is under a normal walking position in profile view, the arm 

movement should less than 180 degree, which means usually the angle of two arms 

should not equal or over 180 degree, in the other words, the wide of a pedestrian will 

less than 2l, if the height of the pedestrian is 2l. Therefore, we chose 1.5l as the wide of 

the hypothesis box of profile view. When any pedestrian is walking, the overall height 

from ground to the top of the head of the pedestrian will change all the time. However, it 
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should be smaller than the height of the pedestrian in a straight up standing position. 

Therefore, we chose the height of pedestrians in a straight up standing position as the 

height of the hypothesis box of profile view.  

For instance, in Figure 4, the pink line segment is one edge of a leg, which the 

length is l. The blue box is the hypothesis box for front view of this person, of which 

height-width-ratio equals to 2.2:0.55. The green box is the hypothesis box of profile 

view, of which the height-width-ratio of profile view hypothesis box is 2:1.5. 

Figure 5 illustrates the hypothesis box for pedestrians in different positions in 

different views. 

                                                 

2 The background image of Figure 4, it was cropped of Vitruvian Man, a drawing by Leonardo da Vinci 

around 1490. The drawing is used to show the proportions of man. 

 

Figure 4.Generate Hypothesis boxes2 
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5.2 Amplify, Shrink, Shift Hypothesis Box 

Initially, we make the assumption that a vertical basic polyline l is one edge of a 

leg. In the real world, however, things are usually not perfect. In most cases, it will be 

lucky if we can extract a polyline that perfectly fits a leg. If the length of l is not equal to 

the leg, and if the hypothesis boxes are generated according to l, meaning that the size of 

the hypothesis boxes are inaccurate. They are either larger or smaller than the ground 

truth hypothesis boxes. To address this potential issue, it is necessary to amplify or 

shrink a hypothesis box based on real situations. 

 

Figure 5 Hypothesis boxes for people in different position. 
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Similarly, in the initial step, we only assume that a polyline l is one edge of a leg. 

However, a pedestrian usually has two legs, resulting four edges. We have not specified 

which leg l belongs to or which edge of the leg it is. To address this potential issue, the 

hypothesis box needs to be shifted to the left and to the right in order to find the best 

location. 

Humans are generally symmetry. Pedestrians are either walking or standing will 

inherit the symmetry feature of humans. Thus, we take advantage of this feature when 

we adjust a hypothesis box. When we amplify, shrink, or shift a hypothesis box, we want 

to select its size and location, which will make the hypothesis box most symmetrical 

regarding to polylines inside the hypothesis box. (Figure 6 shows of the operations of 

amplifying and shifting a hypothesis box.) 

 In Figure 6, the pink line segment is the extracted basic line segment for one 

edge of one leg. Since it is less than the length of the whole leg, the generated hypothesis 

box according to that line segment is smaller than the ground truth hypothesis box, 

which therefore needs amplification. However, it is still not clear whether it belongs to 

the left leg of the pedestrian or the right leg, as well as whether it is an inside edge or 

outside edge. Thus, the hypothesis box needs to be shifted. From the second figure to the 

fourth figure in the first row, it shows the amplifying process of the original blue 

hypothesis box. The four figures in the second row show the steps of shifting the 

hypothesis box. The red hypothesis box in the last figure in Figure 6 is the returned 

hypothesis box with correct size and correct location after the amplification and shifting.  
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5.3 Constraints of Hypothesis Boxes 

One of the criteria that the proposed geometric framework relies on is symmetric 

figure of human. Since a human is generally symmetric, this feature is a very good 

criterion to distinguish humans from other objects on the street. However, many other 

manmade or nature objects may be symmetric, e.g., poles, chairs, cars, tables, and the 

front view of many objects, bicycles, dogs, cats, and birds. In order to eliminate other 

symmetric objects when detecting humans, we need to apply various constraints to the 

hypothesis box, which allows us to reduce the overall time complexity as well.  

 

 

Figure 6.Amplifying and shifting a hypothesis box. 
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In this section, I will introduce five constraints in the order of the application in 

the framework. They are: i) boundary constraint, ii) noisy polyline constraint, iii) leg 

constraint, iv) arm constraint, and v) head constraint. 

5.3.1 Boundary Constraint 

The boundary constraint is used to check the boundary of hypothesis box. If a 

hypothesis box is out of the boundary of the image, then discard the hypothesis box.  

5.3.2 Noisy Polyline Constraint 

This constraint is used to eliminate two types of noisy polylines. One is the 

polylines that are shorter than certain length, and the other one is polylines which are 

longer than specific percentage of the height of the hypothesis box.  

For this proposed pedestrian detection framework, longer polylines such as 

polylines for legs and arms, will have more contribution to the human detection than 

shorter ones, such as a polyline of finger, but we still do not want to have those polylines 

which are longer than certain percentage of the height of the hypothesis box because 

these long line segments might not belong to pedestrians in the hypothesis box.  

If polyline l is an edge of a leg of a specific pedestrian, and leg-to-height ratio is 

around 1:2. Thus [4], the height of this person is 2l. The longest line segment we can 

extract from this pedestrian should not longer than 85% of 2l, which equals the distance 

from foot to shoulder. 

Assume the head height is h and the length of leg is l for a particular person. 

According to [4] the head-to-height ratio for human is usually between 1:5 and 1:7. If 

the head-to-height ratio is 1:7 and leg-to-height ratio is 1:2, then leg-to-head ratio with 

respect to a person is 2l:7h=height-of-a-person. When this person is standing or walking 
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without carrying any long object, the longest straight-line segment we may be able to 

extract from a person is the line from foot to shoulder. If we denote the longest straight-

line as l2, then l2 = 7h-1h = 6h, since h=2l÷7, then 6h=
6

7
×2l≈1.7l=0.85×2l. Thus, if any 

single polyline longer than 1.7l or 85% of 2l in a hypothesis box, it means this polyline 

is not from this person. Thus, we discard this polyline. 

Short noisy polylines might cause extra work. Thus, short noisy polylines need to 

be eliminated as well. Any line segments that less than 1 16⁄  of l (l is an edge of a leg of a 

specific person) are considered as noisy lines, and all the noisy lines will be discarded. 

1 16⁄  of l is similar with the length of one eye of this person. In any 640 : 480 pixels 

image, if a person is located in the center of the image, and the height of the person is 

about ½ of the height this image, the length of his or her leg will be around 120 pixels, 

and 1 16⁄  of the leg length is 8 pixels. It is a reasonable size for noisy lines. 

5.3.3 Leg Constraint 

In a normal case, a pedestrian usually has two legs; for each leg we should be 

able to extract at least two edges, one inside edge and one outside edge. If the knee is 

bent, four edges from one leg may be found, including the inner and outside edges for 

both thigh and shin. Thus, at least four line segments are supposed to be extracted for 

each pedestrian. In addition, the two edges from one pair of inner and outside edges, 

such as the inner and outside edges of left shin, should be general parallel to each other, 

and two edges from different legs could be general either parallel or symmetry to each 

other when people are in natural walking or standing positions.  

In real-world situation, it is difficult to extract exactly four edges for any 

pedestrian due to some unexpected situations. For example, one leg of a pedestrian is 
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blocked by some other objects or other person. It is also challenging to extract a line 

segment that covers exactly the whole leg including thigh and shin since most time 

pedestrian need to bend their legs while walking. However, the parallel or symmetry 

features still exist among the lines of legs. (See Figure 7.) 

We have three criteria to determine whether a leg is existing in a hypothesis box . 

First, if there are two pairs of parallel or symmetric polylines existing in the bottom half 

of a hypothesis box, we assume the original polyline l which is used to generate this 

hypothesis box is an edge of a leg; secondly, if there are one pair of parallel polylines 

and one pair of symmetry polylines existing in the bottom half of the hypothesis box, we 

assume the original polyline l which is used to generate this hypothesis box is an edge of 

a leg as well; thirdly, if there are one pair of parallel polylines or one pair of symmetry 

polylines existing in the bottom half of the hypothesis box, we assume the original 

polyline l which is used to generate this hypothesis box may be an edge of a leg. We 

 

Figure 7 Parallel and Symmetric Lines for Pedestrians. 
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keep the hypothesis box but give lower confidence score to it. (The confidence score 

will be discussed in the Discussion section 7.4.2.) If none of the three patterns exists in 

the bottom half of a hypothesis box, we assume that the polyline l is not from a leg, and 

the hypothesis box will be discarded. 

5.3.4 Arm Constraint 

Similar with the constraint of leg, this constraint is used to filter out hypothesis 

boxes which do not contain any possible arms. This constraint keeps any hypothesis box 

that possibly has arms, but a lower confidence score is given to the hypothesis box. If a 

hypothesis box does not satisfy this constraint, it will be discarded. 

For the front view of a pedestrian, unlike legs, the inside edges of arms might not 

be easy to detect by edge detectors. In many cases, the inside edge might be blocked or 

partially blocked by the body of the person or undistinguishable because the cloth color 

of arms and body are close to each other. However, the outside edge is more than likely 

to be able to detect. For a normal walking or standing person, without carrying or 

holding any objects, the two outside edges of two arms of a specific person generally has 

two different relationships: i) parallel to each other, and ii) symmetric to each other.  

For any hypothesis boxes of front view for pedestrians which contains three 

polylines a1 and a2 in the top half of the hypothesis box, i) if a1 is parallel or symmetric 

to a2, and if the Euclidean distance of a1 and a2 are similar to ½l (l is the leg length of 

this person), then these two polylines are two arms; ii) if a1 is not parallel nor  

symmetric to a2, but the Euclidean distance of a1 and a2 are similar to ½l, these two 

polylines may be two arms, and we keep the hypothesis box, but we give it a lower 

confidence score to this hypothesis box; iii) if there are some line segments, l’, exist in 
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the top half of the hypothesis box, and if the vertical Euclidean distance from one end of 

l’ to the top vertex of l or the top vertex of the mirror image of l (l is the polyline of the 

leg of this person) within certain threshold, l’ is possible an arm, but we give the 

hypothesis box a even lower confidence score than number ii. For number iii, the 

distance from hip joint to shoulder is used as the threshold. Even for different people, the 

ratio of distance from hip joint to shoulder and the distance from foot to hip joint are 

similar. Thus, if the distance from one vertex of a line (v1) in the top half of the hypnosis 

box to the hip joint (the top vertex of l), equals to the threshold, it is possible that the v1 

is shoulder.  

If a hypothesis box does not satisfy any of the three conditions, then we say there 

are no arms in the hypothesis box, indicating that the hypothesis box does not include 

any person. The hypothesis box will be discarded under such circumstance. (See Figure 

8.) 

For profile view of a person, the similar conditions are used as well. The only 

difference is that the Euclidean distance of a1 and a2 is much smaller than front view of 

this person. 

 

Figure 8 Three Scenarios of Arm Constraint. 
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5.4.5 Head Constraint 

Head is another characteristic that is used to identify a pedestrian. Head feature 

plays important role in several existing pedestrian detection algorithms, such as [27, 28]. 

From observing edge images and polylines extracted by the edge images, some patterns 

of heads are identified. The following features will be used for this constraint in order to 

determine a head. 

First of all, a search area for head needs to be defined. In many cases, collars 

might appear distinguishable symmetric pattern. Thus, we want to include neck and 

upper chest in the head search area as well. Due to this reason, the height of the head 

search area is set 50% longer than the head. Pedestrians may wear hats. We want to 

consider this situation, too. Thus, the width of the head search area is set also 50% wider 

than the head. For instance, if the head height equals about ¼ of l, l is the length of leg, 

 

Figure 9 Head 

Search Area. 
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and the width of the head equals ⅙ of l. Thus, the dimension for the head search area for 

this person is ¼l for width and ⅜l for height. Since the height of a hypothesis box is 

generated as 10% taller and wider than the person, additional search area need to be 

added. Therefore, the final head search area dimension is 0.3l wide and 0.575l high. The 

head search area starts from the top of the hypothesis box and is placed in the horizontal 

center of the hypothesis box. In Figure 9, polyline l is the leg; blue box is the hypothesis 

box generated according to l; the red box is the search area of head. 

Generally speaking, we are searching three types of patterns in the searching area: 

i) pattern of heads and collars, ii) pattern of heads or collars, and iii) any line segments 

in the area. For pattern of head, at least one pair of parallel polylines or at least a pair 

symmetric polylines should be observed. For pattern of collar, we look are interested in 

a pair of symmetric polylines. (See Figure 10 for more illustration.) If pattern i exists in 

 

Figure 10 Three Scenarios of Head Constraint. 
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the search area, there is a head in the hypothesis box. Thus, we will say there is a person 

in the hypothesis box. Similarly, if pattern ii exists, there is a head in the hypothesis box. 

Thus, we believe there is a person in the hypothesis box, but a lower confidence score to 

the hypothesis box will be given to it. If only pattern iii exists, there is possibly a head in 

the hypothesis box, which means there is probably a person in the hypothesis box. We 

will keep the box, but an even lower confidence score will be given to this hypothesis 

box. However, if none of the patterns exist in the search area, we assume there is no 

head in the hypothesis box. Thus, the hypothesis box does not include any pedestrians. 

The hypothesis box will be discarded. 

5.4 Select of Output Hypothesis Boxes 

 The last step of the pedestrian detection step is how to output the hypothesis 

boxes. There are many hypothesis boxes was generated during the detection process. 

Even after all the constraints are applied, it is possible that there are more than one 

hypothesis boxes left for one pedestrian. Thus, the most representative hypothesis box 

for the pedestrian should be selected as the output result. 

 We first cluster all the hypothesis boxes for an image. For each cluster, we select 

the most symmetric hypothesis box as the output result. Then, we output all the selected 

hypothesis boxes from different clusters as the final result of the pedestrian detection 

process. 
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Chapter 6. Experimental Design 

6.1 Polyline extraction 

 Our original goal is to extract both 1-piece and 2-piece polylines, and use both 1-

/2-piece polylines for detection. We were going to follow approach of [24]. However, 

not long after the research is started, we started to think that maybe we do not have to 

apply 2-piece polylines to this framework.  

 For each connected component in an edge image, we first detect the two 

dominant points. After the first two dominate points are detected, piecewise linearity 

verification will be preformed by first generating a line segment, l, which uses the two 

dominate points as vertices. Then, for each point, p, of the connected component, we 

compute the Euclidean distance, d, from p to l. If d is smaller or equal to the predefine 

threshold, t, the connected component is linear. It is considered as a 1-piece polyline. 

The linearity threshold for this framework is 2 pixels.  

If d is larger than t, the connected component is not linear. We need to partition 

the connected component. For each non- linear connected component, we have three 

partitioning lines, which connected to dp1, dp2, and dp3
3, denoting as 𝑑𝑝1𝑑𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑑𝑝1𝑑𝑝3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 

and 𝑑𝑝2𝑑𝑝3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Then, we select the partitioning line with the most balanced partitioning 

result. The most balanced means the number of pixels on one side of the partitioning line 

(pixNum1) is most similar to the number of the pixels on the other side of the 

                                                 

3 dp1, dp2, and dp3 represent the first dominate point, the second dominate point, and the third dominate 

point, respectfully. Non-linearity connected component has three dominate points. (See section 4 for 

detail) 
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partitioning line (pixNum2). For each of the three partitioning line, we compute the 

balance, b. If pixNum1 is not equal to pixNum2. Then,  

b = 
min (pixNum1,pixNum2) 

max (pixNum1,pixNum2)
. 

The partitioning line with maxima value of b is the partitioning line for this connected 

component. 

6.2 Hypothesis Box Generation 

Hard coded width-height ratio is a big disadvantage of the current hypothesis box 

generating system, which is heavily relaying on edge detection and line segment 

extraction. This relaying-on relationship raises two issues: i) the generated hypothesis 

box might be too large or too small; ii) the generated hypothesis box may not align 

properly with the pedestrian.  

 Section 6.2.1 will discuss the strategy of amplifying or shrinking hypothesis 

boxes to address Issue i; Section 6.2.2 will elucidate solving Issue ii by shifting 

hypothesis boxes around. 

6.2.1 Modify Hypothesis Box Size 

 To address the Issue i, we amplify or shrink is applied to each hypothesis box to 

find the most suitable size to cover the pedestrian. In order to better achieve the goal, we 

adopt the supersampling strategy.  

For each extracted vertical line segment, l, we would create several samples with 

a variety of lengths. Typically, the samples range from 50% of l to 200% of l. Then, 

hypothesis boxes of each sample are generated. To choose which hypothesis box is the 

most suitable one for this pedestrian among all the hypothesis boxes that are generated 
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by the samples, we need to use the parameters of top-bottom weight balance and left-

right balance (symmetry), which will be introduced in Section 6.2.2. Basically, the most 

balanced hypothesis box is the chosen one. 

6.2.2 Modify the Hypothesis Box Location 

 To solve Issue ii, we need to shift the hypothesis box around.  

Top-down Weight Balance 

To identify the best vertical location of hypothesis boxes, a top-down weight 

balance is used as criteria. The implementation of this top-down weight balance is fairly 

simple. We count the number of pixels in the top half of the hypothesis box and the 

bottom half of the hypothesis box. If both of the numbers are not equal to zero, compute 

the quotient. The hypothesis boxes are ranked from one to zero according to the 

quotients. Then, certain number of hypothesis boxes is returned as candidate hypothesis 

boxes to enter the step of symmetric verification.  

Symmetry 

 For finding the best horizontal location of hypothesis boxes, we tried two 

different methods to find out the most symmetric location of each hypothesis box. The 

first method is left-right weight balance. Similar with the top-down weight balance 

explained before, for this method we count the number of pixels in left part and right 

part of the hypothesis box, and then compute the quotient. This method is easy to 

implement; however, it is still relying on the edge detection and 1-piece polyline 

extraction algorithms.  

 The second method is an based on the histogram of gray values symmetry 

detection method introduced in [2]. For each hypothesis box, firstly, extract the image 
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covered by the hypothesis box and create a new image using the extracted portion; 

secondly, change the new image to gray scale image; next, divide the gray scale image 

to two parts, left part and right part; then, compute the histogram of gray values of each 

of the two parts; finally, apply dot product to the two values to verify the similarity of 

the two parts. The result for dot product should between 0 and 1. 0 means completely 

different, and 1 means identical to each other.  

6.3 Output result 

 Depending on the size of an image, there may be over one thousand vertical lines 

extracted, which means there might be over one thousand potential hypothesis boxes 

generated. Even after applying various constraints, there may still be a large number of 

hypothesis boxes left. Output of the right hypothesis boxes becomes the last task for this 

detection framework. (See Figure 11)  

The idea is: first, cluster all the hypothesis boxes into different clusters; then, 

return the most representative one from each cluster.  

A few attempts were made for clustering, but several attempts were made to 

explore the most accurate way for the selection of output hypothesis boxes. I am going 

to explain them in the following part.  

Clustering 

 Firstly, we rank all the hypothesis boxes from largest to smallest and create a list, 

which is denoted as hb_list, to list all the hypothesis boxes. Then, select the current 

largest hypothesis box on hb_list, denoting it as hb_l. Next, create a clustering of hb_l 

and add itself into the clustering. Fourthly, compare all other hypothesis boxes, hb, with 
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hb_l. For each hb, if hb_l covers more than 50% of hb, add the hb into the clustering of 

hb_l and remove hb from hb_list. After comparing with all the hypothesis boxes in 

hb_list, remove hb_l from the hb_list as well. Lastly, check the hb_list, if there are any 

other hypothesis boxes left on the list, repeat the procedure again; otherwise, the 

clustering is completed. 

Best Hypothesis Box Selection 

 Several attempts are made to select the output hypothesis box, which represents 

the cluster best. The first attempt uses the median. Since we know in any of clusterings 

or groups, the member on either end will not present the group best. Therefore, we use 

the median member as the output result for each clustering. It is an easy implementation, 

and quick attempt. Right after the implementation, we find out that this method does not 

work. The reason is that in many clusterings, the output hypothesis box selected by this 

method does not represent the clusterings well.  

 
 

Figure 11 All hypothesis boxes after applied constraints  
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 Next method is to use head as the criteria to select the returning hypothesis box. 

We check the head area for each hypothesis boxes in the clustering, and select the 

hypothesis box of which the head area is the most symmetric. This method is much 

better than the one we tried before. However, another strategy occurred to us while we 

are implementing the second method. 

 The last method is an extension of the second attempt. We apply symmetric 

checking to the whole hypothesis box. Since humans are general symmetric, if the 

hypothesis box covers a person, the head area should be symmetric, too. However, it is 

possible that a hypothesis box is not covering any person, but accidently the head area of 

 
Figure 12 Detection results for three return methods. 

The first image was returned according to the median member method (1st method), the 

second image was returned by head symmetry (2nd method), the third image was 

returned by the symmetry for entire hypothesis box, the forth image shows the extracted 

line. 
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this hypothesis box is symmetric. Therefore, when applying the symmetric checking to 

the whole hypothesis box, not only the head area is applied but other relevant area is 

applied too. This will prevent this scenario from happening. (See Figure 12 for the result 

of the three return methods.) 
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Chapter 7. Discussion 

7.1 Test Dataset and Evaluation Measure 

7.1.1 Test Dataset 

 For this thesis the testing data set used is a subset of INRIA Person Dataset. 

INRIA Person Dataset is one of the most prevalent datasets used to test pedestrian 

detection algorithms for still images. Some other datasets might be used in the future, 

including Caltech, Caltech-Japan, ETH, TUD-Brussels, and Daimler. According to the 

website of INRIA Personal Dataset, the images of this data set were taken from personal 

digital image collections over a long time period. The majority of the images have high 

resolution. Some of the images were cropped. Few of the images were taken from the 

Internet using Google images. [49] For the subset of INRIA Person Dataset, which we 

used to test the algorithm, we manually selected 155 positive images, and randomly 

selected 187 negative images. 4 For the positive images, we are focusing to the images 

with pedestrians wearing normal dress, regular cloth and pants, the front view of 

pedestrians, and the image was taken at the eye level. There are total 287 pedestrians 

among the test images. 

7.1.2 Measurement  

 For this paper, the single frame evaluation measurement introduced in the 

PASCAL object detection challenges [10] is used as the measurement to determine 

                                                 

4 Positive images are the images contain at least one pedestrian inside it. Negative images are the images 

do not contain any pedestrian. 
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whether the detection is successful or not. The basic rationale of this measurement is to 

compare the output hypothesis box, BBhb, of each person in an image with the ground-

truth bounding box, BBgt, of the person. If the intersect of BBhb and BBgt, divided by the 

union of BBhb and BBgt larger than 50%, the detection is successful. The computation 

can follow the formula below: 

𝑟𝑎𝑡𝑖𝑜 =  
BBℎ𝑏∩BB𝑔𝑡

BBℎ𝑏∪BB𝑔𝑡
. 

7.2 Detection Result  

7.2.1 Detection Result 

 For the detection result, see Figure 13 and APPENDIX A. 

 
 

Figure 13 Some Detection Results. 



 38 

7.2.2 Comparing Result 

Since pedestrian detection is an active research area, there are many other 

detection algorithms existing. Even Mathworks’ Matlab, one of the most popular and 

common tools that has been using for computer vision, added a people detection 

function into its newest version, Matlab 2015b, as part of the vision package, which is 

called PeopleDetector. The vision.PeopleDetector function was implemented using 

Histogram of Oriented Gradient features and a trained Support Vector Machine classifier 

[48]. The method was originally introduced in Dalal and Triggs’ paper, [7]. For 

convenience, the method is named Dalal and Triggs’ method in this thesis. 

We applied the algorithm in this study and the Dalal and Triggs’ algorithm to 

342 testing images. In total, 287 pedestrians were involved in the testing image. Our 

algorithm successfully detected 127 pedestrians, and Dalal and Triggs’ only detected 86 

pedestrians. Since these two detection algorithms used different detection methods, the 

detection results do not have much overlapping with each other. There are only 41 

pedestrians detected by both of the two detectors. (See Figure 14 and APPENDIX B for 

comparison results.) 

 
 

Figure 14 Comparison Result. 

The left image was detected by Dalal and Triggs’ algorithm, and the rogjht one was 

detected ours algorithms. 
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Another thing we noticed is that the Dalal and Triggs’ algorithm would generate 

much more false-positive detections. Dalal and Triggs’ totally made 367 false-positive 

detections, and our algorithm only made 215 false-positive detections. (Also see Table 

1.) 

Table 1. Comparison Result with Dalal and Triggs’ Algorithm . 

 Our Algorithm Dalal and Triggs’ 

Total Pedestrians5 287 287 

Successfully Detection 127 86 

False-positive Detection 217 367 

7.3 Failure Analysis 

 After analyzing the failure cases, we discovered that failures were usually caused 

by one or more of four factors: i) pedestrians are not always symmetric; ii) output 

selection algorithm does not select the best hypothesis box; iii) occlusion and/or crowd 

appears in the image; and iv) image with low contrast.  

7.3.1 Failure Cause by Asymmetric 

                                                 

5 The number of total pedestrians in testing image. 

 
Figure 15 Failure caused by violation of symmetry. 
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 Current detection models are taking advantage of symmetry feature of 

pedestrian. Generally, a pedestrian in an erect posture is symmetric. However, not all the 

people will walk with an erect posture, for instance, the lady in Figure 15.  

 The lady stoops to the kid in front of her. In the front or back view, even a 

pedestrian bending down his or her body, the pedestrian is still generally symmetric. 

Nevertheless, it may not be true in other angles of view. From the 1-piece line image 

(the second picture in Figure 15), the lady is in the 45-degree angle of camera, if without 

her right arm, the symmetry feature still exists, meaning that our current detection 

models should still cover this scenario. However, in this specific image, her right arm 

violates the symmetric feature of pedestrian, which caused the detection failure.  

 Another example is Figure 16. As we can see, the gentleman in Figure 16 is 

violating the symmetric feature as well. The first picture in Figure 16 was the original 

 
Figure 16 Failure caused by violation of symmetric. 
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detection result. Even though the detection result is not categorized as failure according 

to our evaluation measurement, we still can improve the detection result by not using the 

symmetric criteria in the step of outputting hypothesis boxes. The detection result can 

observed as the second picture in Figure 16.  

 By introducing more detection models, we might be able to solve this problem. 

Even though more detection models might lead us into overfitting problem, it is still 

worth to try in the future. If we can overcome this failure, it would dramatically increase 

the accuracy.  

7.3.2 Failure Cause by Output Selection Algorithm 

 In many testing cases, our detection algorithm is able to generate the hypothesis 

box that covers the pedestrian pretty well, however, the output algorithm might choose 

 
Figure 17 Failure caused by output selection algorithm. 
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some one else other than the best one, for instance Figure 17. 

 The first image of Figure 17 is the outputted detection result, and the third image 

shows all the hypothesis boxes generated during the detection period, after applying all 

the constraints. We can easily find out there are some hypothesis boxes covering the 

pedestrian better than the one returned. The second image used median of clustering of 

hypothesis boxes as the return box for that clustering. We can see the detection is 

improved significantly. Therefore, in the future, if we can develop a better output 

selection algorithm, the detection result should be improved.  

7.3.3 Failure Cause by Occlusion and/or Crowd 

 In our detection result, failure often appears among crowd or occlusion, such as 

people in the background of Figure 18. Both of crowd and occlusion will affect the 

accuracy of 1-piece polyline extraction, which is the feature needed for detection. It is 

possible to solve the problem, if we add some more detection models. For instance, we 

can add a model that the hypothesis box has fixed width and various heights. The width 

 
Figure 18 Failure caused by occlusion or crowd. 
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could equal to the wide of image or certain percentage of the image. Then we might be 

able to use the density of vertical lines as the criteria to make the detection decision.  

7.3.4 Low Contrast 

 Low contrast of images is another reason for failure detection. In low constrict 

image, it is very difficult to extract 1-piece polylines accurately since current edge 

detectors generally are not working well with low contrast image. 

7.4 Future Study 

Even though there is much work to do before this simple line based pedestrian 

detection framework could be implemented in the industry, the result is still very 

promising. There are many possible ways we can improve the algorithm. Followings are 

some suggestions for future study. 

7.4.1 More Detection Models 

 Currently, we only have two detection models, including a model for front view 

of a pedestrian and a model for profile view of a pedestrian. In the future, more detection 

models should be added to the system, such as models for two or three people walking 

together, models for pedestrian with stroller, models for adult walking with kids, so on 

and so forth.  

7.4.2 A Voting System/Scoring Hypothesis Box 

In the future, a voting system to this framework to help on selection of 

hypothesis boxes should also be added. During the detection step, several constraints 

would give a low confidence score to some hypothesis boxes that are not very confident 

in detection. Currently, we have not used the scoring system. We hope in the future 
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work, we can introduce a voting system as an addition to current framework. The voting 

system will be helpful to eliminate some low scoring hypothesis boxes, which will not 

only help with increasing the detection accurate, but also will improve the time 

efficiency of the algorithm. 

7.4.3 Machine Learning and Classifier  

For this basic line segment based pedestrian framework, the geometric feature of 

pedestrian is solely applied. There is no training and learning step involved. We have not 

used neither classifiers nor machine learning strategy. In the future, we are looking 

forward to including some machine learning strategy into this proposed geometric 

framework, possibly neural network. We are confident if we do so, it will dramatically 

increase the detection accuracy.  
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Chapter 8. Conclusion 

The pedestrian detection framework proposed in this thesis is using basic line 

segments and the geometric relationships between line segments as the cue to detect 

pedestrians. It is a fairly new attempt on the topic of pedestrian detection. There is still a 

lot of room for improvement. 

The result of current work is promising. Compared with Dalal and Triggs’ 

pedestrian detection algorithm, the detection result improved by 48%, and the false-

positive detection reduced by 41%. In the future work, we hope to include more 

detection models introducing a hypothesis boxes voting system, adding machine-

learning feature. We believe in such way, the detection result will become even better. 
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APPENDIX A: MORE DETECTION RESULTS WITH EXTRACTED 

LINES  
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APPENDIX B: COMPARISON RESULT WITH DALAL AND TRIGGS’ 

ALGORITHM  

(Right column is the detection result of Dalal and Triggs’ algorithm) 
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