15 research outputs found

    Self-supervised Likelihood Estimation with Energy Guidance for Anomaly Segmentation in Urban Scenes

    Full text link
    Robust autonomous driving requires agents to accurately identify unexpected areas in urban scenes. To this end, some critical issues remain open: how to design advisable metric to measure anomalies, and how to properly generate training samples of anomaly data? Previous effort usually resorts to uncertainty estimation and sample synthesis from classification tasks, which ignore the context information and sometimes requires auxiliary datasets with fine-grained annotations. On the contrary, in this paper, we exploit the strong context-dependent nature of segmentation task and design an energy-guided self-supervised frameworks for anomaly segmentation, which optimizes an anomaly head by maximizing the likelihood of self-generated anomaly pixels. To this end, we design two estimators for anomaly likelihood estimation, one is a simple task-agnostic binary estimator and the other depicts anomaly likelihood as residual of task-oriented energy model. Based on proposed estimators, we further incorporate our framework with likelihood-guided mask refinement process to extract informative anomaly pixels for model training. We conduct extensive experiments on challenging Fishyscapes and Road Anomaly benchmarks, demonstrating that without any auxiliary data or synthetic models, our method can still achieves competitive performance to other SOTA schemes

    Learning with Noisy labels via Self-supervised Adversarial Noisy Masking

    Full text link
    Collecting large-scale datasets is crucial for training deep models, annotating the data, however, inevitably yields noisy labels, which poses challenges to deep learning algorithms. Previous efforts tend to mitigate this problem via identifying and removing noisy samples or correcting their labels according to the statistical properties (e.g., loss values) among training samples. In this paper, we aim to tackle this problem from a new perspective, delving into the deep feature maps, we empirically find that models trained with clean and mislabeled samples manifest distinguishable activation feature distributions. From this observation, a novel robust training approach termed adversarial noisy masking is proposed. The idea is to regularize deep features with a label quality guided masking scheme, which adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples. Further, an auxiliary task is designed to reconstruct input data, it naturally provides noise-free self-supervised signals to reinforce the generalization ability of deep models. The proposed method is simple and flexible, it is tested on both synthetic and real-world noisy datasets, where significant improvements are achieved over previous state-of-the-art methods

    Rethinking Mobile Block for Efficient Attention-based Models

    Full text link
    This paper focuses on developing modern, efficient, lightweight models for dense predictions while trading off parameters, FLOPs, and performance. Inverted Residual Block (IRB) serves as the infrastructure for lightweight CNNs, but no counterpart has been recognized by attention-based studies. This work rethinks lightweight infrastructure from efficient IRB and effective components of Transformer from a unified perspective, extending CNN-based IRB to attention-based models and abstracting a one-residual Meta Mobile Block (MMB) for lightweight model design. Following simple but effective design criterion, we deduce a modern Inverted Residual Mobile Block (iRMB) and build a ResNet-like Efficient MOdel (EMO) with only iRMB for down-stream tasks. Extensive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, e.g., EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass equal-order CNN-/Attention-based models, while trading-off the parameter, efficiency, and accuracy well: running 2.8-4.0x faster than EdgeNeXt on iPhone14

    How to be prepared for the next pandemic?

    No full text
    Wouldn't it be great if you could have your own virus detection facility at home, or even in your pocket? That's what Boshen Liang & his colleagues at imec & Ku Leuven are working on via so-called lab-on-chip technology. In this way, we could drastically increase the capacity to test people during a possible next pandemic.status: Published onlin

    CHROMATIX: computing the functional landscape of many-body chromatin interactions in transcriptionally active loci from deconvolved single cells

    No full text
    Chromatin interactions are important for gene regulation and cellular specialization. Emerging evidence suggests many-body spatial interactions play important roles in condensing super-enhancer regions into a cohesive transcriptional apparatus. Chromosome conformation studies using Hi-C are limited to pairwise, population-averaged interactions; therefore unsuitable for direct assessment of many-body interactions. We describe a computational model, CHROMATIX, which reconstructs ensembles of single-cell chromatin structures by deconvolving Hi-C data and identifies significant many-body interactions. For a diverse set of highly active transcriptional loci with at least 2 super-enhancers, we detail the many-body functional landscape and show DNase accessibility, POLR2A binding, and decreased H3K27me3 are predictive of interaction-enriched regions

    FRIH: Fine-grained Region-aware Image Harmonization

    Full text link
    Image harmonization aims to generate a more realistic appearance of foreground and background for a composite image. Existing methods perform the same harmonization process for the whole foreground. However, the implanted foreground always contains different appearance patterns. All the existing solutions ignore the difference of each color block and losing some specific details. Therefore, we propose a novel global-local two stages framework for Fine-grained Region-aware Image Harmonization (FRIH), which is trained end-to-end. In the first stage, the whole input foreground mask is used to make a global coarse-grained harmonization. In the second stage, we adaptively cluster the input foreground mask into several submasks by the corresponding pixel RGB values in the composite image. Each submask and the coarsely adjusted image are concatenated respectively and fed into a lightweight cascaded module, adjusting the global harmonization performance according to the region-aware local feature. Moreover, we further designed a fusion prediction module by fusing features from all the cascaded decoder layers together to generate the final result, which could utilize the different degrees of harmonization results comprehensively. Without bells and whistles, our FRIH algorithm achieves the best performance on iHarmony4 dataset (PSNR is 38.19 dB) with a lightweight model. The parameters for our model are only 11.98 M, far below the existing methods

    Calibrated Teacher for Sparsely Annotated Object Detection

    No full text
    Fully supervised object detection requires training images in which all instances are annotated. This is actually impractical due to the high labor and time costs and the unavoidable missing annotations. As a result, the incomplete annotation in each image could provide misleading supervision and harm the training. Recent works on sparsely annotated object detection alleviate this problem by generating pseudo labels for the missing annotations. Such a mechanism is sensitive to the threshold of the pseudo label score. However, the effective threshold is different in different training stages and among different object detectors. Therefore, the current methods with fixed thresholds have sub-optimal performance, and are difficult to be applied to other detectors. In order to resolve this obstacle, we propose a Calibrated Teacher, of which the confidence estimation of the prediction is well calibrated to match its real precision. In this way, different detectors in different training stages would share a similar distribution of the output confidence, so that multiple detectors could share the same fixed threshold and achieve better performance. Furthermore, we present a simple but effective Focal IoU Weight (FIoU) for the classification loss. FIoU aims at reducing the loss weight of false negative samples caused by the missing annotation, and thus works as the complement of the teacher-student paradigm. Extensive experiments show that our methods set new state-of-the-art under all different sparse settings in COCO. Code will be available at https://github.com/Whileherham/CalibratedTeacher
    corecore