33 research outputs found

    Ultrasound-targeted microbubble destruction enhances AAV mediated gene transfection: human RPE cells in vitro and the rat retina in vivo

    Get PDF
    The present study was performed to investigate the efficacy and safety of Ultrasound-targeted microbubble destruction (UTMD) mediated rAAV2-EGFP to cultured human retinal pigment epithelium (RPE) cells _in vitro_ and the rat retina _in vivo_. _In vitro_ study, cultured human RPE cells were exposed to US under different conditions with or without microbubbles. Furthermore, the effect of UTMD to rAAV2-EGFP itself and the cells were evaluated. _In vivo_ study, gene transfer was examined by injecting rAAV2-EGFP into the subretinal space of the rats with or without microbubbles and then exposed to US. We investigated EGFP expression _in vivo_ via stereomicroscopy and performed quantitative analysis by Axiovision 3.1 software. HE staining and frozen sections were used to observe tissue damage and location of EGFP gene expression. _In vitro_ study, the transfection efficiency of rAAV2-EGFP increased 74.85% under the optimal UTMD conditions. Furthermore, there was almost no cytotoxicity to the cells and rAAV2-EGFP itself. _In vivo_ study, UTMD could be used safely to enhance and accelerate transgene expression of the retina. Fluorescence expression was mainly located in the layer of retina. UTMD is a promising method for gene delivery to the retina

    C Terminus of Hsc70-interacting Protein Promotes Smooth Muscle Cell Proliferation and Survival through Ubiquitin-mediated Degradation of FoxO1

    Get PDF
    Forkhead transcription factors (FoxOs) play a pivotal role in controlling cellular proliferation and survival. The cellular level of these factors is tightly regulated through the phosphoinositide 3-kinase/Akt and ubiquitin-mediated degradation. However, the ubiquitin ligases responsible for the degradation of FoxO1 and the relevance of this regulation to smooth muscle cell (SMC) proliferation and survival have not been fully identified. Here we showed that overexpression of C terminus of Hsc70-interacting protein (CHIP) promoted ubiquitination and degradation of FoxO1 in SMCs in response to tumor necrosis factor-α. Both the U-box (containing ubiquitin ligase activity) and the charged (essential for FoxO1 binding) domains within CHIP were required for CHIP-mediated FoxO1 down-regulation. Moreover, interaction and ubiquitination of FoxO1 by CHIP depended on phos pho ryl a tion of FoxO1 at Ser-256. Furthermore, overexpression of CHIP repressed FoxO1-mediated transactivation and its proapo pto tic function following tumor necrosis factor-α treatment. In contrast, knockdown of CHIP by small interfering RNA enhanced FoxO1-mediated transactivation and its effect on SMC proliferation and survival. Taken together, our data indicate that CHIP is a negative regulator of FoxO1 activity through ubiquitin-mediated degradation, and inhibition of CHIP may serve as a potential therapeutic target for reducing proliferative arterial diseases

    An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography : Implications for aerosol pH estimate

    Get PDF
    Water-soluble inorganic ions such as ammonium, nitrate and sulfate are major components of fine aerosols in the atmosphere and are widely used in the estimation of aerosol acidity. However, different experimental practices and instrumentation may lead to uncertainties in ion concentrations. Here, an intercomparison experiment was conducted in 10 different laboratories (labs) to investigate the consistency of inorganic ion concentrations and resultant aerosol acidity estimates using the same set of aerosol filter samples. The results mostly exhibited good agreement for major ions Cl-, SO2-4, NO-3, NHC4 and KC. However, F-, Mg2C and Ca2C were observed with more variations across the different labs. The Aerosol Chemical Speciation Monitor (ACSM) data of nonrefractory SO2-4, NO-3 and NHC4 generally correlated very well with the filter-analysis-based data in our study, but the absolute concentrations differ by up to 42 %. Cl-from the two methods are correlated, but the concentration differ by more than a factor of 3. The analyses of certified reference materials (CRMs) generally showed a good detection accuracy (DA) of all ions in all the labs, the majority of which ranged between 90 % and 110 %. The DA was also used to correct the ion concentrations to showcase the importance of using CRMs for calibration check and quality control. Better agreements were found for Cl-, SO2-4, NO-3, NHC4 and KC across the labs after their concentrations were corrected with DA; the coefficient of variation (CV) of Cl-, SO2-4, NO-3, NHC4 and KC decreased by 1.7 %, 3.4 %, 3.4 %, 1.2 % and 2.6 %, respectively, after DA correction. We found that the ratio of anion to cation equivalent concentrations (AE/CE) and ion balance (anions-cations) are not good indicators for aerosol acidity estimates, as the results in different labs did not agree well with each other. In situ aerosol pH calculated from the ISORROPIA II thermodynamic equilibrium model with measured ion and ammonia concentrations showed a similar trend and good agreement across the 10 labs. Our results indicate that although there are important uncertainties in aerosol ion concentration measurements, the estimated aerosol pH from the ISORROPIA II model is more consistent

    Novel Discoveries Targeting Pathogenic Gut Microbes and New Therapies in Pancreatic Cancer: Does Pathogenic E. coli Infection Cause Pancreatic Cancer Progression Modulated by TUBB/Rho/ROCK Signaling Pathway? A Bioinformatic Analysis

    No full text
    Pancreatic cancer (PC) is a pernicious cancer of the digestive system which remains a high degree of malignancy. Increasing studies demonstrated that regulating the gut microbiome may become a brand new strategy to improve the therapeutic outcomes of PC. This study is aimed at obtaining the pathway in the microbial tumorigenesis of PC. Microarray datasets GSE27890, GSE46234, and GSE17610 were downloaded from the GEO (Gene Expression Omnibus) database. Differential analysis was performed for every single gene chip using the R software package (“Limma” package), and functional enrichment analyses were carried out by DAVID (Database for Annotation, Visualization and Integrated Discovery). The PPI (protein-protein interaction) network was constructed with the Search Tool for the Retrieval of Interacting Genes (STRING). The survival analysis was performed by GEPIA and USCS. A total of 84 differentially expressed genes (DEGs) were identified, and 3 of them were extracted (TUBB, TUBA4A, and TLR5). Biological process analysis revealed that these 3 genes were mainly enriched in pathogenic Escherichia coli (E. coli) infection. Survival analysis and pathway analysis revealed that TUBB (tubulin, beta class I) may be associated with the pathogenic E. coli infection, which may be involved in the carcinogenesis and progression of PC by activating the TUBB/Rho/ROCK signaling pathway. Elevated evidence indicated that a specific gut microbe could affect the progression of PC by suppressing immune response. However, little attention has been paid to the relationship and crosstalk between TUBB/Rho/ROCK signaling, microbes, and PC. This article is aimed at deducing that gut and tumor microbes are related to the development of PC by stimulating TUBB/Rho/ROCK signaling, while ablation of microbes by antibiotics cotreated with inhibitors of TUBB/Rho/ROCK signaling were identified as a novel target for PC therapy

    RNA–CTMA Dielectrics in Organic Field Effect Transistor Memory

    No full text
    In recent years, biopolymers are highly desired for their application in optic electronic devices, because of their unique structure and fantastic characteristics. In this work, a non-volatile memory (NVM) device based on the bio thin-film transistor (TFT) was fabricated through applying a new RNA–CTMA (cetyltrimethylammonium) complex as a gate dielectric. The physicochemical performance, including UV, CD spectral, thermal stability, surface roughness, and microstructure, has been investigated systematically. The RNA–CTMA complex film exhibits strong absorption with a well-defined absorption peak around 260 nm, the RMS roughness is ~2.1 nm, and displayed excellent thermal stability, up to 240 °C. In addition, the RNA–CTMA complex-based memory device shows good electric performance, with a large memory window up to 52 V. This demonstrates that the RNA–CTMA complex is a promising candidate for low cost, low-temperature processes, and as an environmentally friendly electronic device

    Extracellular vesicles as mediators of the progression and chemoresistance of pancreatic cancer and their potential clinical applications

    No full text
    Abstract Pancreatic cancer is one of the most lethal cancers worldwide due to its insidious symptoms, early metastasis, and chemoresistance. Hence, the underlying mechanisms contributing to pancreatic cancer progression require further exploration. Based on accumulating evidence, extracellular vesicles, including exosomes and microvesicles, play a crucial role in pancreatic cancer progression and chemoresistance. Furthermore, they also possess the potential to be promising biomarkers, therapy targets and tools for treating pancreatic cancer. Therefore, in-depth studies on the role of extracellular vesicles in pancreatic cancer are meaningful. In this review, we focus on the regulatory effects of extracellular vesicles on pancreatic cancer progression, metastasis, cancer-related immunity and chemoresistance, particularly their potential roles as biomarkers and therapeutic targets

    LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer

    No full text
    Abstract Background Reprogrammed energy metabolism has become an emerging hallmark of cancer in recent years. Transporters have been reported to be amino acid sensors involved in controlling mTOR recruitment and activation, which is crucial for the growth of both normal and tumor cells. L-type amino acid transporter 2 (LAT2), encoded by the SLC7A8 gene, is a Na+-independent neutral amino acid transporter and is responsible for transporting neutral amino acids, including glutamine, which can activate mTOR. Previous studies have shown that LAT2 was overexpressed in gemcitabine-resistant pancreatic cancer cells. However, the role of LAT2 in chemoresistance in pancreatic cancer remains uncertain and elusive. Methods The effects of LAT2 on biological behaviors were analyzed. LAT2 and LDHB levels in tissues were detected, and the clinical value was evaluated. Results We demonstrated that LAT2 emerged as an oncogenic protein and could decrease the gemcitabine sensitivity of pancreatic cancer cells in vitro and in vivo. The results of a survival analysis indicated that high expression levels of both LAT2 and LDHB predicted a poor prognosis in patients with pancreatic cancer. Furthermore, we found that LAT2 could promote proliferation, inhibit apoptosis, activate glycolysis and alter glutamine metabolism to activate mTOR in vitro and in vivo. Next, we found that gemcitabine combined with an mTOR inhibitor (RAD001) could reverse the decrease in chemosensitivity caused by LAT2 overexpression in pancreatic cancer cells. Mechanistically, we demonstrated that LAT2 could regulate two glutamine-dependent positive feedback loops (the LAT2/p-mTORSer2448 loop and the glutamine/p-mTORSer2448/glutamine synthetase loop) to promote glycolysis and decrease gemcitabine (GEM) sensitivity in pancreatic cancer. Conclusion Taken together, our data reveal that LAT2 functions as an oncogenic protein and could regulate glutamine-dependent mTOR activation to promote glycolysis and decrease GEM sensitivity in pancreatic cancer. The LAT2-mTOR-LDHB pathway might be a promising therapeutic target in pancreatic cancer
    corecore