31 research outputs found

    Retroviral Elements and Their Hosts: Insertional Mutagenesis in the Mouse Germ Line

    Get PDF
    The inbred mouse is an invaluable model for human biology and disease. Nevertheless, when considering genetic mechanisms of variation and disease, it is important to appreciate the significant differences in the spectra of spontaneous mutations that distinguish these species. While insertions of transposable elements are responsible for only ~0.1% of de novo mutations in humans, the figure is 100-fold higher in the laboratory mouse. This striking difference is largely due to the ongoing activity of mouse endogenous retroviral elements. Here we briefly review mouse endogenous retroviruses (ERVs) and their influence on gene expression, analyze mechanisms of interaction between ERVs and the host cell, and summarize the variety of mutations caused by ERV insertions. The prevalence of mouse ERV activity indicates that the genome of the laboratory mouse is presently behind in the “arms race” against invasion

    Inter-Strain Epigenomic Profiling Reveals a Candidate IAP Master Copy in C3H Mice.

    Get PDF
    Insertions of endogenous retroviruses cause a significant fraction of mutations in inbred mice but not all strains are equally susceptible. Notably, most new Intracisternal A particle (IAP) ERV mutagenic insertions have occurred in C3H mice. We show here that strain-specific insertional polymorphic IAPs accumulate faster in C3H/HeJ mice, relative to other sequenced strains, and that IAP transcript levels are higher in C3H/HeJ embryonic stem (ES) cells compared to other ES cells. To investigate the mechanism for high IAP activity in C3H mice, we identified 61 IAP copies in C3H/HeJ ES cells enriched with H3K4me3 (a mark of active promoters) and, among those tested, all are unmethylated in C3H/HeJ ES cells. Notably, 13 of the 61 are specific to C3H/HeJ and are members of the non-autonomous 1Δ1 IAP subfamily that is responsible for nearly all new insertions in C3H. One copy is full length with intact open reading frames and hence potentially capable of providing proteins i

    Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements

    Get PDF
    Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines

    Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements

    Get PDF
    Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines

    Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms

    Get PDF
    The “arms race” relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE–induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness

    Mouse germ line mutations due to retrotransposon insertions

    No full text
    Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.Medicine, Faculty ofNon UBCMedical Genetics, Department ofReviewedFacult

    Evidence for Epigenetic Maintenance of Ly49a

    No full text

    Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates

    No full text
    Insertion of transposable elements is a major cause of genomic expansion in eukaryotes. Less is understood, however, about mechanisms underlying contraction of genomes. In this study, we show that retroelements can, in rare cases, be precisely deleted from primate genomes, most likely via recombination between 10- to 20-bp target site duplications (TSDs) flanking the retroelement. The deleted loci are indistinguishable from pre-integration sites, effectively reversing the insertion. Through human-chimpanzee-Rhesus monkey genomic comparisons, we estimate that 0.5%-1% of apparent retroelement “insertions” distinguishing humans and chimpanzees actually represent deletions. Furthermore, we demonstrate that 19% of genomic deletions of 200-500 bp that have occurred since the human-chimpanzee divergence are associated with flanking identical repeats of at least 10 bp. A large number of deletions internal to Alu elements were also found flanked by homologies. These results suggest that illegitimate recombination between short direct repeats has played a significant role in human genome evolution. Moreover, this study lends perspective to the view that insertions of retroelements represent unidirectional genetic events

    Visualized Computational Predictions of Transcriptional Effects by Intronic Endogenous Retroviruses

    No full text
    <div><p>When endogenous retroviruses (ERVs) or other transposable elements (TEs) insert into an intron, the consequence on gene transcription can range from negligible to a complete ablation of normal transcripts. With the advance of sequencing technology, more and more insertionally polymorphic or private TE insertions are being identified in humans and mice, of which some could have a significant impact on host gene expression. Nevertheless, an efficient and low cost approach to prioritize their potential effect on gene transcription has been lacking. By building a computational model based on artificial neural networks (ANN), we demonstrate the feasibility of using machine-learning approaches to predict the likelihood that intronic ERV insertions will have major effects on gene transcription, focusing on the two ERV families, namely Intracisternal A-type Particle (IAP) and Early Transposon (ETn)/MusD elements, which are responsible for the majority of ERV-induced mutations in mice. We trained the ANN model using properties associated with these ERVs known to cause germ-line mutations (positive cases) and properties associated with likely neutral ERVs of the same families (negative cases), and derived a set of prediction plots that can visualize the likelihood of affecting gene transcription by ERV insertions. Our results show a highly reliable prediction power of our model, and offer a potential approach to computationally screen for other types of TE insertions that may affect gene transcription or even cause disease.</p> </div

    Comparisons of potential factors linked to the likelihood of affecting gene transcription by ERVs.

    No full text
    <p>The name of factors is given above each panel, and the average value of each factor is compared between the positive and negative datasets. Panel A and D are comparisons of proportions using bar plots, and p-values are calculated using the ‘equality of proportions test’; Panel B, C, E and F are comparisons of means using box plots, and p-values are calculated using the ‘Student's <i>t</i>-test’.</p
    corecore