32 research outputs found

    Crew Scheduling Considering both Crew Duty Time Difference and Cost on Urban Rail System

    Get PDF
    Urban rail crew scheduling problem is to allocate train services to crews based on a given train timetable while satisfying all the operational and contractual requirements. In this paper, we present a new mathematical programming model with the aim of minimizing both the related costs of crew duty and the variance of duty time spreads. In addition to iincorporating the commonly encountered crew scheduling constraints, it also takes into consideration the constraint of arranging crews having a meal in the specific meal period of one day rather than after a minimum continual service time. The proposed model is solved by an ant colony algorithm which is built based on the construction of ant travel network and the design of ant travel path choosing strategy. The performances of the model and the algorithm are evaluated by conducting case study on Changsha urban rail. The results indicate that the proposed method can obtain a satisfactory crew schedule for urban rails with a relatively small computational time

    Optimizing the Long-Term Operating Plan of Railway Marshalling Station for Capacity Utilization Analysis

    Get PDF
    Not only is the operating plan the basis of organizing marshalling station’s operation, but it is also used to analyze in detail the capacity utilization of each facility in marshalling station. In this paper, a long-term operating plan is optimized mainly for capacity utilization analysis. Firstly, a model is developed to minimize railcars’ average staying time with the constraints of minimum time intervals, marshalling track capacity, and so forth. Secondly, an algorithm is designed to solve this model based on genetic algorithm (GA) and simulation method. It divides the plan of whole planning horizon into many subplans, and optimizes them with GA one by one in order to obtain a satisfactory plan with less computing time. Finally, some numeric examples are constructed to analyze (1) the convergence of the algorithm, (2) the effect of some algorithm parameters, and (3) the influence of arrival train flow on the algorithm

    Integrated Optimization of Service-Oriented Train Plan and Schedule on Intercity Rail Network with Varying Demand

    Get PDF
    For a better service level of a train operating plan, we propose an integrated optimization method of train planning and train scheduling, which generally are optimized, respectively. Based on the cost analysis of both passengers travelling and enterprises operation, and the constraint analysis of trains operation, we construct a multiobjective function and build an integrated optimization model with the aim of reducing both passenger travel costs and enterprise operating costs. Then, a solving algorithm is established based on the simulated annealing algorithm. Finally, using as an example the Changzhutan intercity rail network, as an example we analyze the optimized results and the influence of the model parameters on the results

    Passenger Flow Pushing Assignment Method for an Urban Rail Network Based on Hierarchical Path and Line Decomposition

    No full text
    For urban rail transit, an environmentally-friendly transportation mode, reasonable passenger flow assignment is the basis of train planning and passenger control, which is conducive to the sustainability of finance, operation and production. With the continuous expansion of the scale of urban rail networks, passenger travel path decision-making tends to be complex, which puts forward higher requirements of networked transportation organization. Based on undirected graphs and the idea of the recursive divide-and-conquer algorithm, this paper proposes a hierarchical effective path search method made up of a three-layer path generation strategy, which consists of deep search line paths, key station paths composed of origin–destination (O-D) nodes and transfer stations, and the station sequence path between the key stations. It can effectively simplify the path search and eliminate obvious unreasonable paths. Comparing the existing research results based on the classical polynomial Logit model, a practical Improved C-Logit multi-path passenger flow assignment model is proposed to calculate the selection ratio of each path in the set of effective paths. Combining the hierarchical path search strategy, the O-D pairs of passenger flow are divided into local-line and cross-line situations. The time-varying cross-line passenger flow is decomposed into a series of passenger sections along the key station paths. A passenger flow pushing assignment algorithm based on line decomposition is designed, which satisfies the dynamic, time-varying and continuous characteristics. The validation of Guangzhou Metro’s actual line network and time-varying O-D passenger demand in 2019 shows that the spatio-temporal distribution results of the passenger pushing assignment have a high degree of coincidence with the actual statistical data

    The Collaborative Optimization of Stop Plan with Train Working Diagram of High-Speed Railway Passenger Trains

    No full text

    Profit Maximization Model with Fare Structures and Subsidy Constraints for Urban Rail Transit

    No full text
    This paper analyzes government subsidies based on the service design (i.e., headway) and fare structures of an urban rail transit system while considering necessary financial support from the government. To capture the interactions among the operator performance, government subsidies, and passengers in an urban rail transit system, a profit maximization model with nonnegative profit constraint is formulated to determine the optimal fare and headway solutions. Then, the social welfare that results from the operator profit maximization model is analyzed. Finally, a numerical example from Changsha, China, is employed to verify the feasibility of the proposed model. The major results consist of optimized solutions for decision variables, i.e., the fares and train headways, as well as subsidies to the operator. The fare elasticity factor under two fare structures significantly affects fares and demand. As the fare elasticity factor increases, the social welfare gradually decreases and a deficit occurs at low fares and demand, while subsidies rise from 0 to ÂĄ24658.00 and ÂĄ38089.16 under the flat fare and distance-based fare structures

    Optimal Coordinated Strategy Analysis for the Procurement Logistics of a Steel Group

    No full text
    This paper focuses on the optimization of an internal coordinated procurement logistics system in a steel group and the decision on the coordinated procurement strategy by minimizing the logistics costs. Considering the coordinated procurement strategy and the procurement logistics costs, the aim of the optimization model was to maximize the degree of quality satisfaction and to minimize the procurement logistics costs. The model was transformed into a single-objective model and solved using a simulated annealing algorithm. In the algorithm, the supplier of each subsidiary was selected according to the evaluation result for independent procurement. Finally, the effect of different parameters on the coordinated procurement strategy was analysed. The results showed that the coordinated strategy can clearly save procurement costs; that the strategy appears to be more cooperative when the quality requirement is not stricter; and that the coordinated costs have a strong effect on the coordinated procurement strategy

    Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions

    No full text
    In recent years, with the global energy shortage and severe environmental deterioration, railway transport has begun to attract great interest as a green transportation mode. One of the vital means to realize social sustainable development is to improve railway transportation systems, in which providing a demand-oriented train timetable with a higher service level is the most viable method. A demand-oriented train timetable problem generally deals with passengers’ train-choice decisions according to the queue principle, but it is not adapted to rail systems, such as China’s, where passengers usually book tickets a few days in advance by telephone or online instead of going to stations. This paper is devoted to modeling and solving the demand-oriented train timetabling problem integrated with passengers’ train-booking decisions. Firstly, a bi-level programming model is formulated for their integrated optimization on a rail network. Its upper-level model is to optimize train arrival and departure times at each visited station with the aim of reducing passengers’ total travel cost, while its lower-level model aims to determine passengers’ train-booking behavior using the user equilibrium theory. Then, a priority-based heuristic algorithm is designed to solve this model. It has two main steps at each iteration: one is to determine the number of passengers booking each train with a given train timetable, and the other is to improve the current train timetable based on the valuable information of passenger train-booking decisions. The performance, convergence, and practicability of the proposed method were analyzed based on the Changsha–Zhuzhou–Xiangtan intercity rail in China. Experimental results show the proposed method can effectively reduce the travel cost for passengers, creating a greater passenger demand for railway travel, which is beneficial to the sustainable development of railway systems and even society

    Train Operation Curve Optimization for an Urban Rail Interval With Multi-Parameter Adjustment

    No full text
    This paper proposes an energy consumption optimization method of train operation by controlling multiple parameters for an urban rail interval. The parameters include the maximum operation speed, the ratio of the minimum coasting speed to the maximum speed, the maximum traction, and the braking force. Based on the mass belt model, an optimization model of train operation is built with these parameters as decision variables. The objective function is to minimize the energy consumption and the penalty on the running time delays for the observed rail interval. A simulated annealing algorithm is designed to solve the model, which adopts synergic adjustment of multiple parameters based on the influence of the running time with variation of each parameter. A numerical example of Guangzhou Metro Line 8 is adopted to test the method. The results show that the maximum operation speed has a decisive influence on the optimal train operation strategy, interval running time, and energy consumption; the train traction has a direct effect on energy consumption; the train braking force has multiple optimal solutions; moreover, the energy-saving strategy has a significant effect on energy saving in a longer running time

    Optimal Design of the Feeder-Bus Network Based on the Transfer System

    No full text
    This paper studied the classic feeder-bus network design problem (FBNDP), which can be described as follows: for the passenger travel demand between rail stations and bus stops on a given urban transit network, it designs the optimal feeder bus routes and frequencies so as to minimize the passengers’ travel expense and the operator’s cost. We extended the demand pattern of M-to-1 in most existing researches to M-to-M. We comprehensively considered the passenger travel cost, which includes the waiting and riding cost on the bus, riding cost on rail, and transfer cost between these two transportation modes, and presented a new genetic algorithm that determines the optimal feeder-bus operating frequencies under strict constraint conditions. The numerical examples under different demand patterns have been experienced and analysed, which showed the robustness and efficiency of the presented algorithm. We also found that the distribution pattern of the travel demand has a significant influence on the feeder-bus network construction
    corecore