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For a better service level of a train operating plan, we propose an integrated optimization method of train planning and train
scheduling, which generally are optimized, respectively. Based on the cost analysis of both passengers travelling and enterprises
operation, and the constraint analysis of trains operation, we construct a multiobjective function and build an integrated
optimization model with the aim of reducing both passenger travel costs and enterprise operating costs. Then, a solving algorithm
is established based on the simulated annealing algorithm. Finally, using as an example the Changzhutan intercity rail network, as
an example we analyze the optimized results and the influence of the model parameters on the results.

1. Introduction

A passenger train operating plan (TOP) is not only the basis
of train organization and station operation for enterprise, but
also the foundation of train choice for passengers travelling
by rail transit (e.g., an urban railway system, intercity railway
system, and high-speed railway system). A high-quality TOP
directly contributes to improving the level of passenger
service and boosts enterprise operation efficiency. The TOP
generally should arrange origin and destination stations, run
routes, intermediate stations, vehicle numbers, and schedule
for trains. More broadly, it also determines the crew schedul-
ing and usage plan of the locomotive or electricmultiple units
(EMUs).However, the latter part of the TOP is not considered
in this paper. Due to the complexity and difficulty of solving
the TOP of a large-scale rail network, the TOP problem is
usually divided into two subproblems: the train planning
problem and train scheduling problem, which are solved
one by one. Firstly, the train plan is optimized to arrange
the origin and destination station, run route, intermediate
stations, vehicle number, and frequency of trains with the aim
of improving both the passenger travel benefit and enterprise
operation profit. And then the train scheduling problem is
solved in order to schedule each train’s departure and arrival
time at each station based on the former optimized train
plan.

Most research on the train planning problem so far con-
centrates on designing an optimization model and its algo-
rithm, aiming at getting a better service-level and high-
benefit train plan with constraints of line and station capacity
and rail resources (e.g., maximum departure number per day
and available vehicles, etc.). Anthony [1] gave a basic frame
for solving the passenger train planning problem as early
as 1965. Chang et al. [2] proposed a multiobjective model
and its algorithm of a train plan with the aim of reducing
both enterprise operating costs and passenger travel cost.
Yaghini et al. [3] took into account the passenger direct ratio
besides travel costs in optimizing train plan. Wang et al. [4]
provided an optimization method for a periodic train plan.
Recently, some studies [5–7] combined the passenger train
choice problem into the train plan problem and accordingly
proposed the bilevel programming method of a train plan
based on the leader-following relation between formulating
a train plan and passenger train choice. For more examples
of train plan optimization, see Schmidt and Schöbel [8],
Goossens et al. [9], and Schöbel and Scholl [10].

The train scheduling problem is to generally find an opti-
mal or satisfying train timetable with a given optimization
objective, subject to a lot of operational and safety con-
straints (e.g., arrival and departure headway requirements).
A branch-and-bound algorithm, Lagrangian relaxation algo-
rithm, and simulation method are widespread used to solve
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this problem. Higgins et al. [11] developed a branch-and-
bound solution framework and some heuristic techniques
to find feasible train timetables, and Zhou and Zhong [12]
further incorporated some effective rules into the branch-
and-bound algorithm for improving its solving efficiency.
Brännlund et al. [13] proposed a Lagrangian relaxation
approach to find a profit-maximizing train timetable. Dorf-
man and Medanic [14] proposed an effective simulation
approach called TAS to solve the large-scale and real-world
train scheduling problem, and Li et al. [15] and Xu et al. [16]
further improved TAS by introducing some modified rules
and efficient strategies inserted into it. For more studies of
train scheduling, refer to Jong et al. [17], Sahana et al. [18],
Yalçinkaya and Mirac Bayhan [19], and Zhou et al. [20].

Obviously, optimizing a train plan and train schedule
successively has some drawbacks in enhancing the pas-
senger service level and satisfying varying travel demands
of intercity rail. First, with the lack of time information,
when optimizing a train plan, it is impossible to describe
in detail passenger transfer time, wait time, and in-vehicle
time determined exactly by a train timetable.Thus, improving
passenger travel time is beyond the train plan problem
to some extent. And the optimization of a train timetable
generally aims to minimize the total travel time of trains,
but not of passengers, because it has no passenger volume
information about the train.Moreover, this two-stagemethod
cannot make trains’ time distribution fit passenger demand
distribution better in one day. To overcome the drawbacks
thoroughly, combining the train plan and train schedule
as a whole, that is, TOP, an integrated optimization of
them is an effective alternative. Compared with the two-
stage approach, the integrated optimization method has the
following differences.

(1) It is to optimize train plan and train schedule simul-
taneously based on a rail network and its passengers
demand distributions, while the two-stage method is
firstly to determine a train plan which is taken as
one input when scheduling trains latter. Thus, the
integratedmethod has the decision variables and con-
straints of both train planning and train scheduling.

(2) Although reducing passengers travel costs and enter-
prise operating costs is taken as the objective in both
two methods, their calculation is based on a train
schedule in the integrated method while that is only
based on a train plan in the two-stage method.

It should be noted that the efficiency of this integrated
optimization is not a knotty obstacle for an intercity rail
network with a relatively small scale owing to the improve-
ment of computer speed and the development of modern
optimization algorithm.

The main contributions of this paper are as follows.

(1) An integrated optimization model of train planning
and scheduling is built to minimize both passenger
travel costs and enterprise operating costs. It canmore
exactly and fully describe passenger travel costs.

(2) A solving algorithm based on simulated annealing
algorithms (SA) is designed to solve the proposed
optimization model.

The remainder of this paper is organized as follows. In
Section 2, we describe the problem of TOP optimization and
analyze passenger travel costs and enterprise operating costs.
In Section 3, we discuss the constraints and multiobjective
function and present the integrated optimization model of
TOP. In Section 4, we design a solving algorithmbased on SA.
Moreover, the case of the Changzhutan intercity rail network
is used to illustrate the application of the proposedmodel and
algorithm and also to analyze the impact of their parameters
on passenger travel costs and enterprise operating costs in
Section 5. Finally, the conclusion and further study are given
in Section 6.

2. Problem Description

An intercity rail network (𝑆, 𝐸) is represented by a set of
stations 𝑆 = {1, 2, . . . , 𝐾} and a set of double-track sections
𝐸 = {𝑒(𝑘, 𝑘

󸀠) | 𝑘, 𝑘󸀠 ∈ 𝑆} in which 𝑒(𝑘, 𝑘󸀠) and 𝑒(𝑘󸀠, 𝑘) show,
respectively, the down and up direction sections connecting
station 𝑘 and 𝑘󸀠. The mileage of 𝑒(𝑘, 𝑘󸀠) is denoted by 𝑙(𝑘, 𝑘󸀠)
or by 𝑙(𝑒).

Intercity rail passenger flow has the obvious characteristic
of fluctuating with the time of day, and it has peak hours and
low hours of travel. So, it is called varying demand in this
paper. The varying demand from origin 𝑟 to destination 𝑠 in
one day is denoted by a function of time 𝑡 denoted by 𝑞

𝑟𝑠
(𝑡).

For simplification, the following assumptions are made
based on the actual condition of intercity railway in this
paper.

(A1) The research range is limited to an independent
intercity rail network and passenger total demand of
one day among stations is not affected by travel costs
determined by the TOP.

(A2) The intercity rail network provides only one speed
type (e.g., 200 km/h) of train servicing passengers,
and all vehicles have the same capacity for passengers.

(A3) The network capacity is enough to satisfy passengers
travelling by the mileage-shortest route; thus, all
passengers can travel with those routes.

(A4) Passengers get on the train according to their arriving
order.

The TOP can be expressed as a set of trains Ω, and each
train is made up by route, vehicle number, and schedule.
The route of train 𝑖 is denoted by 𝑆

𝑖
, which is composed of

a set of stations or a set of sections, the vehicle number of
train 𝑖 is expressed by 𝑏

𝑖
, and the sequences of departure time

and arrival time arranged by ascending order are denoted by
𝑋
𝑖
, 𝑌

𝑖
, respectively.Meanwhile, the arrival time anddeparture

time of train 𝑖 at station 𝑘 are denoted by 𝑦
𝑖𝑘
, 𝑥

𝑖𝑘
, respectively.

2.1. Analysis of Passenger Travel Costs. Passenger travel costs
mainly consist of wait time at the origin station, transfer
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time including necessary walking time and wait time during
the process from getting off the train to getting on board
of another train at the transfer station, in-vehicle time, and
fare spending. Considering the additional inconvenience
produced by transfer, an additional cost is imposed on
transfer passengers besides transfer time. This additional
cost contributes to avoiding transfer for passengers when
they have other nontransfer paths for travelling. Under the
assumption (A3), passenger fare spending calculated by travel
mileage multiplying price rate per mileage is a constant and
is not considered in this paper.

Wait time at the origin station depends on passengers’
arriving time and boarding time. When passengers arrive at
station 𝑟 at time 𝑡 and wait there until boarding train 𝑖 at time
𝑥
𝑖𝑟
, their wait time 𝑐

1
(𝑟, 𝑖) can be calculated by

𝑐
1
(𝑟, 𝑖) = 𝑥

𝑖𝑟
− 𝑡. (1)

When passengers transfer in station 𝑘 with train 𝑖 and
transfer out with train 𝑗, their transfer time 𝑐

2
(𝑖, 𝑗, 𝑘) can

be determined as follows according to departure time 𝑥
𝑗𝑘
of

train 𝑗 and arrival time 𝑦
𝑖𝑘
of train 𝑖:

𝑐
2
(𝑖, 𝑗, 𝑘) = 𝑥

𝑗𝑘
− 𝑦

𝑖𝑘
. (2)

Moreover, their additional cost of transfer 𝑐
3
(𝑖, 𝑗, 𝑘) can be

given as 𝜌multiple of their transfer time; namely,

𝑐
3
(𝑖, 𝑗, 𝑘) = 𝜌𝑐

2
(𝑖, 𝑗, 𝑘) . (3)

In-vehicle time comprises train operation time and dwell
time of each intermediate station. When passengers travel
with train 𝑖 from station 𝑘 to station 𝑘󸀠, their in-vehicle time
𝑐
4
(𝑖, 𝑘, 𝑘󸀠) spent on this train is

𝑐
4
(𝑖, 𝑘, 𝑘

󸀠
) = 𝑦

𝑖𝑘
󸀠 − 𝑥

𝑖𝑘
. (4)

Passenger travel cost is the total of wait time, transfer
time and transfer additional cost, and in-vehicle time. For
passengers travelling by path 𝑝 from station 𝑟 to station 𝑠,
their travel cost 𝐶(𝑟, 𝑠, 𝑝) is

𝐶 (𝑟, 𝑠, 𝑝) = 𝑐
1
(𝑟, 𝑖

0

𝑝
)

+ ∑
(𝑖,𝑗,𝑘)∈𝑝

(𝑐
2
(𝑖, 𝑗, 𝑘) + 𝑐

3
(𝑖, 𝑗, 𝑘))

+ ∑

(𝑖,𝑘,𝑘
󸀠
)∈𝑝

𝑐
4
(𝑖, 𝑘, 𝑘

󸀠
) ,

(5)

where 𝑝 is the travel path of passengers, 𝑖0
𝑝
is the first train

for passengers of path 𝑝 travelling, and (𝑖, 𝑗, 𝑘) ∈ 𝑝 shows
passengers of path 𝑝 needing to transfer from train 𝑖 to train
𝑗 at station 𝑘. And (𝑖, 𝑘, 𝑘󸀠) ∈ 𝑝means that passengers of path
𝑝 have to travel by train 𝑖when going from station 𝑘 to station
𝑘
󸀠.

2.2. Analysis of Enterprise Operating Costs. With the action
of assumptions (A1) and (A3), an intercity rail enterprise has
a fixed ticket income, the product of passenger flow, and its

corresponding fare. Thus, the operating costs are considered
only in this paper. Operating cost is the sum of the following
three components: that is, train organization cost 𝐹

𝑂
, rail line

cost 𝐹
𝐿
, and rail vehicle cost 𝐹

𝑉
. It is represented as

𝐹 = 𝐹
𝑂
+ 𝐹

𝐿
+ 𝐹

𝑉
. (6)

Train organization cost is the fee spentmainly on the train
crew and the organizing operation at the train’s origin station.
It is the product of train number𝑁 and the organization cost
𝜔 per train; namely,

𝐹
𝑂
= 𝑁𝜔. (7)

Rail line cost is generated for line maintenance and is
directly related to the total travel mileage of a train. It can be
expressed as

𝐹
𝐿
= 𝜓∑

𝑖∈Ω

𝑙
𝑖
, (8)

where 𝜓 is the maintenance cost per kilometer line and 𝑙
𝑖
is

the travel mileage of train 𝑖.
Vehicle cost is used for vehicle maintenance. It can be

calculated as

𝐹
𝑉
= ∑

𝑖∈Ω

(𝜒
0
+ 𝜒𝑙

𝑖
) 𝑏

𝑖
, (9)

where 𝜒
0
is the fixed cost for each vehicle maintenance and 𝜒

is the average maintenance cost of vehicle per mileage.

3. Optimization Model

3.1. Analysis of Constraints. Train origin anddestinationmust
be a technical station that has the areas and facilities for
a train’s technical operation and servicing work. The set of
technical stations on an intercity rail network is denoted by
𝑆
𝑡
, and then the origin station 𝑜

𝑖
and destination station 𝑑

𝑖
of

train 𝑖must be included in set 𝑆
𝑡
; namely,

𝑜
𝑖
, 𝑑

𝑖
∈ 𝑆

𝑡
∀𝑖. (10)

The vehicle number of a train should be set for an upper
bound limited by the length of station track.The train vehicle
number of upper bound for all travel routes is expressed as 𝑏.
That is,

𝑏
𝑖
≤ 𝑏 ∀𝑖. (11)

Meanwhile, the vehicle number of a train should not be less
than the number that makes this train operate without profit
when it reaches its passenger capacity. When train 𝑖 reaches
its passenger capacity, its operating cost 𝐹

𝑖
and ticket income

𝑅
𝑖
can be given, respectively, by

𝐹
𝑖
= 𝜔 + 𝜓𝑙

𝑖
+ (𝜒

0
+ 𝜒𝑙

𝑖
) 𝑏

𝑖
,

𝑅
𝑖
= 𝜙𝑙

𝑖
𝑏
𝑖
𝜑,

(12)

where 𝜙 is the fare rate per passenger per kilometer and 𝜑 is
the passenger capacity of vehicle.
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To make train 𝑖 profitable, its ticket income 𝑅
𝑖
should be

more than the operating cost 𝐹
𝑖
; that is,

𝑅
𝑖
> 𝐹

𝑖
. (13)

Based on that, the vehicle number of train 𝑖 should satisfy
another constraint as

𝑏
𝑖
≥ ⌈

𝜔 + 𝜓𝑙
𝑖

𝜙𝑙
𝑖
𝜑 − 𝜒

0
− 𝜒𝑙

𝑖

⌉ ∀𝑖, (14)

where ⌈⌉ is the symbol of rounding up.
The train schedule should meet the constraint of operat-

ing time period from time 𝑡
𝑠
to time 𝑡

𝑒
. That is,

𝑡
𝑠
≤ 𝑥

𝑖𝑘
≤ 𝑡

𝑒
∀𝑖, 𝑘 ∈ 𝐺

𝑖
,

𝑡
𝑠
≤ 𝑦

𝑖𝑘
≤ 𝑡

𝑒
∀𝑖, 𝑘 ∈ 𝐺

𝑖
.

(15)

Two same-direction trains departing from or arriving at
the same station should satisfy the minimum safety time
interval; namely,

𝑥
𝑗𝑘
− 𝑥

𝑖𝑘
≥ 𝜏

𝑓
∀𝑖 ̸= 𝑗; 𝑘 ∈ 𝐺

𝑖
∩ 𝐺

𝑗
,

𝑦
𝑗𝑘
− 𝑦

𝑖𝑘
≥ 𝜏

𝑑
∀𝑖 ̸= 𝑗; 𝑘 ∈ 𝐺

𝑖
∩ 𝐺

𝑗
,

(16)

where 𝜏
𝑓
, 𝜏

𝑑
are separately the minimum safety time interval

between departure operations and between arrival opera-
tions.

In addition, a train’s departure and arrival time in section
should meet the constraint of minimum total run time.
The technical speed of the train is denoted by V, and train
additional times for starting and stopping in section 𝑒 are
expressed by 𝜏󸀠

𝑒
, 𝜏󸀠󸀠

𝑒
, respectively. That is,

𝑦
𝑗𝑘
󸀠 − 𝑥

𝑖𝑘
≥ 𝛿

𝑘

𝑖
𝜏
󸀠

𝑒
+
𝑙 (𝑒)

V
+ 𝛿

𝑘
󸀠

𝑖
𝜏
󸀠󸀠

𝑒
∀𝑖, 𝑒 (𝑘, 𝑘

󸀠
) ∈ 𝐺

𝑖
, (17)

where 𝛿𝑘
𝑖
is the symbol of describing whether train 𝑖 should

stop at station 𝑘 or not. If train 𝑖 stops at station 𝑘, then 𝛿𝑘
𝑖
= 1;

otherwise, 𝛿𝑘
𝑖
= 0.

Meanwhile, a train’s arrival and departure time at the
station should satisfy the constraint of minimum dwell time
related to the volume of passengers getting on and getting off
train. That is,

𝑥
𝑗𝑘
− 𝑦

𝑖𝑘
≥ Γ

𝑖𝑘
∀𝑖, 𝑘 ∈ 𝐺

𝑖
, (18)

where Γ
𝑖𝑘
is the minimum dwell time of train 𝑖 at station 𝑘 for

ensuring that passengers get on and off safely. It can be given
by

Γ
𝑖𝑘
(𝑞

𝑖𝑘
) =

{{{

{{{

{

0, 𝑞
𝑖𝑘
= 0,

1, 0 < 𝑞
𝑖𝑘
≤ 𝑞,

1 + ⌈
𝑞
𝑖𝑘
− 𝑞

𝜉
⌉ , 𝑞

𝑖𝑘
> 𝑞,

(19)

where 𝑞
𝑖𝑘
is the volume of passengers getting on and getting

off train 𝑖 at station 𝑘, 𝑞 is themaximumnumber of passengers
for getting on and off the train in one minute, and 𝜉 is the
parameter affecting the increase of train dwell time.

3.2. Objective Function and Optimization Model. The cost
minimization of intercity rail transit system, that is, minimiz-
ing both enterprise operating costs and passenger travel costs,
is mostly used as the optimization objective of the train plan
in many studies [2, 5–7]. In this paper, it is also adopted as
the optimization objective of the TOP, but passenger travel
costs including not only in-vehicle time, but also wait time
and transfer time, are more full-scale and are calculatedmore
exactly.

The objective function is expressed as the weighted sum
of an enterprise’s operating costs and passengers’ travel costs.
That is,

min𝑍 = 𝛼𝐹 + (1 − 𝛼)𝐶

= 𝛼𝐹 + (1 − 𝛼) 𝜆∑
𝑟

∑
𝑠

∑
𝑝∈𝑃
𝑟𝑠

𝑞 (𝑟, 𝑠, 𝑝) 𝐶 (𝑟, 𝑠, 𝑝)

= 𝛼(𝑁𝜔 + 𝜓∑
𝑖∈Ω

𝑙
𝑖
+ ∑

𝑖∈Ω

(𝜒
0
+ 𝜒𝑙

𝑖
) 𝑏

𝑖
)

+ (1 − 𝛼) 𝜆

⋅ ∑
𝑟

∑
𝑠

∑
𝑝∈𝑃
𝑟𝑠

𝑞 (𝑟, 𝑠, 𝑝)

⋅ (𝑐
1
(𝑟, 𝑖

0

𝑝
)

+ ∑
(𝑖,𝑗,𝑘)∈𝑝

(𝑐
2
(𝑖, 𝑗, 𝑘) + 𝑐

3
(𝑖, 𝑗, 𝑘))

+ ∑

(𝑖,𝑘,𝑘
󸀠
)∈𝑝

𝑐
4
(𝑖, 𝑘, 𝑘

󸀠
)) ,

(20)

where 𝛼 is the weight parameter balancing the enterprise’s
operating costs and passengers’ travel costs, 𝜆 is the average
time value of passengers, and 𝑞(𝑟, 𝑠, 𝑝) is the volume of
passengers of path 𝑝 from origin 𝑟 to destination 𝑠.

Based on the above analysis, with the decision variables of
train setΩ, the optimization model (M1) of the TOP consists
of the objective function (20) and all constraints (10), (11), and
(14) through (18). It should be noted that model (M1) has to
determine not only each train’s route, vehicle number, and
schedule, but also train number.

4. Optimization Algorithm Based on SA

4.1. Algorithm for Passenger Train Choice and Calculation of
Passenger Travel Costs. All passengers have to obey the rule
of time-space priority when choosing a train. In other words,
passengers arriving at a station earlier have the priority of
boarding the train, but they also have to yield to those on the
train as to the limit of train capacity. For that, passengers are
distributed to trains according to the ascending order of train
departure and arrival time treated as the decision-making
time.
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At the decision-making time of a train departing, which
passengers waiting in the station will choose this train and
how many of them can get on it should be determined. Pas-
sengers waiting in the station can be divided into two parts,
original departing and transferring passengers. The sets of
original departing passengers and transferring passengers at
station 𝑘 are denoted by 𝐺

𝑘
and𝐻

𝑘
, respectively. For original

departing passengers 𝑔 ∈ 𝐺
𝑘
, their earliest arriving time is 𝑡

𝑔

and destination is 𝑠
𝑔
. And for transferring passengers ℎ ∈ 𝐻

𝑘
,

their transferring in time is 𝑡
ℎ
, destination is 𝑠

ℎ
, and their

number is 𝑞
ℎ
.

When train 𝑖 departs from station 𝑘, passengers whose
cost-shortest path from station 𝑘 to their destination contains
train 𝑖 need to get on it, but the number of those who can
get on board successfully depends on the empty seat number
𝑢
𝑖
of train 𝑖. Based first-arriving-first-boarding principle, the

number of passengers getting on the train is given as

𝑞
𝑔
=

{{

{{

{

∫
𝑡
∗

𝑡
𝑔

𝑞
𝑘𝑠
𝑔

(𝑡) d𝑡 𝑡
𝑔
≤ 𝑡∗

0 𝑡
𝑔
> 𝑡∗

𝑔 ∈ 𝐺
𝑘
∈ 𝐺

𝑘
,

𝑞
ℎ
= {

𝑞
ℎ

𝑡
ℎ
≤ 𝑡∗

0 𝑡
ℎ
> 𝑡∗

ℎ ∈ 𝐻
𝑘
∈ 𝐻

𝑘
,

(21)

where𝐺
𝑘
, 𝐻

𝑘
are the sets of original departing passengers and

transferring passengers needing to get on train 𝑖 at station 𝑘
and 𝑡∗ is the time boundary deciding what time passengers
arriving can get on board of the train. Itmeans that passengers
arriving before 𝑡∗ can get on the train, but those arriving after
this time cannot get on board, because there are no empty
seats left. When the passenger total number of 𝐺

𝑘
, 𝐻

𝑘
is less

than 𝑢
𝑖
, then 𝑡∗ = 𝑥

𝑖𝑘
. Otherwise, the value of 𝑡∗ can be

calculated by solving the following equality:

∑

ℎ∈𝐻
𝑘
|𝑡
ℎ
≤𝑡
∗

𝑞
ℎ
+ ∑

𝑔∈𝐺
𝑘
|𝑡
𝑔
≤𝑡
∗

∫
𝑡
∗

𝑡
𝑔

𝑞
𝑘𝑠
𝑔

(𝑡) d𝑡 = 𝑢
𝑖
. (22)

Thewait time, transfer time, and additional cost for trans-
fer at station 𝑘 of passengers getting on train 𝑖 can be calcu-
lated by

𝑐
1
(𝑘, 𝑖) = ∑

𝑔∈𝐺
𝑘

𝑐
𝑔

1
(𝑘, 𝑖)

= ∑

𝑔∈𝐺
𝑘

max{∫
𝑡
∗

𝑡
𝑔

𝑞
𝑘𝑠
𝑔

(𝑡) (𝑥
𝑖𝑘
− 𝑡) d𝑡, 0} ,

𝑐
2
(𝑘, 𝑖) = ∑

ℎ∈𝐻
𝑘

𝑐
ℎ

2
= ∑

ℎ∈𝐻
𝑘

(𝑥
𝑖𝑘
− 𝑡

ℎ
) 𝑞

ℎ
,

𝑐
3
(𝑘, 𝑖) = 𝜌𝑐

2
(𝑘, 𝑖) .

(23)

At the decision-making time of train 𝑖 arriving station 𝑘,
passengers having arrived at their destination or whose cost-
shortest path from station 𝑘 to their destination does not
include train 𝑖 again have to get off. The set of passengers
arriving at station 𝑘 with train 𝑖 is denoted by 𝐵

𝑖
, with

the subset of those getting off the train being denoted by
𝐵
𝑖
. For passengers 𝑏 ∈ 𝐵

𝑖
, their destination is 𝑠

𝑏
, and their

number is 𝑞
𝑏
. The in-vehicle time of passengers 𝑏 ∈ 𝐵

𝑖
from

the rear station 𝑘󸀠 to station 𝑘 can be calculated by

𝑐
𝑏

4
(𝑖, 𝑘

󸀠
, 𝑘) = {

𝑦
𝑖𝑘
− 𝑥

𝑖𝑘
󸀠 , 𝑏 ∈ 𝐵

𝑖
,

𝑥
𝑖𝑘
− 𝑥

𝑖𝑘
󸀠 , 𝑏 ∈ 𝐵

𝑖
− 𝐵

𝑖
.

(24)

And the total of their in-vehicle time is given as

𝑐
4
(𝑖, 𝑘

󸀠
, 𝑘) = ∑

𝑏∈𝐵
𝑖

𝑞
𝑏
𝑐
𝑏

4
(𝑖, 𝑘

󸀠
, 𝑘) . (25)

Based on the above analysis, Algorithm 1 for passenger
train choice and calculation of passenger travel costs is
described as follows.

Algorithm 1. Consider the following.

Step 1 (initialization). Set𝐵
𝑖
= 0 and 𝑢

𝑖
= 𝑏

𝑖
𝜑 of each train and

𝐻
𝑘
= 0 of each station. Find all original departing passengers

𝐺
𝑘
of each station and let 𝐶 = 0 as the total travel costs of

passengers.

Step 2 (find the earliest decision-making time 𝑡). If 𝑡 corre-
sponds to departure time 𝑥

𝑖𝑘
, then go to Step 2.1; otherwise,

if 𝑡 corresponds to arrival time 𝑦
𝑖𝑘
, then go to Step 2.2.

Step 2.1. Determine boarding passengers 𝐺
𝑘
, 𝐻

𝑘
and their

number 𝑞
𝑔
(𝑔 ∈ 𝐺

𝑘
), 𝑞

ℎ
(ℎ ∈ 𝐻

𝑘
). Then, calculate their wait

time 𝑐
1
(𝑘, 𝑖), transfer time 𝑐

2
(𝑘, 𝑖), and transfer additional cost

𝑐
3
(𝑘, 𝑖). Set𝐶 = 𝐶+𝑐

1
(𝑘, 𝑖)+𝑐

2
(𝑘, 𝑖)+𝑐

3
(𝑘, 𝑖) and update empty

seats number 𝑢
𝑖
, transferring passengers𝐻

𝑘
, original depart-

ing passengers 𝐺
𝑘
, and train passengers 𝐵

𝑖
. Go to Step 3.

Step 2.2. Determine getting-off passengers 𝐵
𝑖
and calculate

their in-vehicle time 𝑐
4
(𝑖, 𝑘󸀠, 𝑘). Then, set 𝐶 = 𝐶 + 𝑐

4
(𝑖, 𝑘󸀠, 𝑘)

and update empty seats number 𝑢
𝑖
, transferring passengers

𝐻
𝑘
and train passengers 𝐵

𝑖
.

Step 3 (judge whether there are other decision-making times
or not). If yes, then return to Step 2. Otherwise, 𝐶 is the
passengers’ total travel costs, and terminate this algorithm.

4.2. The General Algorithm for Optimizing TOP

4.2.1. Generation of an Initial Solution of TOP. Trains of the
initial solution are created one by one based on the varying
demand on the network. A new train is organized with
departing time 𝑡when the product of its boarding passengers’
number𝑄 and their average wait timeR including wait time
and transfer wait time at a technical station satisfies

𝑄R = 𝑀 (26)

and its vehicle number is determined by

𝑏 =
𝑄

𝜑ℓ
, (27)
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where 𝑀 is the control parameter for organizing one new
train and ℓ is the average usage rate of train capacity.

From formula (26), we know that a train should be
organized either when there are enough passengers waiting
for boarding, or when some passengers have waited for too
long.

Thenewly created train is assumed to stop at all the passed
stations during the process of generating the initial solution.
When it arrives at the next technical station, if the sum of
passengers waiting to get on and those on the train is more
than 𝜍 percent of its capacity, it moves forward along the
direction with the largest value of 𝜍. Otherwise, it stops here
as its destination.

4.2.2. Generation of a Neighbor Solution of TOP. A new
solution is generated by changing the train’s route, stop
stations, vehicle number, and starting time of the current
solution with the probabilitymethod. As for the train route, it
is adjusted by adding some new sections to its front and end
or removing partial sections depending on train’s operating
costs and passenger volume of them. Two Boolean variables 󰜚
and𝜛 both created by Bernoulli distribution are, respectively,
used to indicate whether partial sections should be added
to the train route and removed from it. If 󰜚 = 1, the
corresponding sections are added to the train route, andwhen
𝜛 = 1, the corresponding sections are removed from it. As
for the train sections 𝜇 between two technical stations, the
probability of 󰜚 = 1 is given by

𝜘 = 1 − 𝑒
−𝑊
𝜇
𝐶
𝑢
/𝐹
𝜇
𝑇
, (28)

where 𝑊
𝜇
, 𝐶

𝑢
, and 𝐹

𝜇
are the passenger-kilometer, passen-

gers’ average travel costs, and operating cost in train section
𝜇 respectively, and 𝑇 is the current temperature.

For new sections 𝜇, the probability of 𝜛 = 1 is given by

𝜘 = 1 − 𝑒
−𝑄
𝑢
/𝜃
𝑢
𝑇
, (29)

where 𝑄
𝑢
is the number of passengers transferring from

or transferring to the current train and 𝜃
𝑢
is their average

transfer cost.
The alteration of train stop stations is also based on a

Bernoulli distribution. For station 𝑘 of train 𝑖, the probability
of a train’s stop is given by

𝜘
𝑖𝑘
= 𝑒

−𝑄
𝑖𝑘
𝐶
𝑖𝑘
𝑇
, (30)

where 𝑄
𝑖𝑘
is the number of passengers getting on and off the

train and 𝐶
𝑖𝑘
is the average travel cost of passengers getting

on the train at station 𝑘.
The modification of both the train vehicle number and

starting time is given as follows:

𝑑
∗
= {

𝑑 + 𝜂 (𝐵 − 𝑑) 𝜁 ≥ 0

𝑑 + 𝜂 (𝑑 − 𝐴) 𝜁 < 0,
(31)

𝜁 = 𝑇[(1 +
1

𝑇
)
|2𝜉−1|

− 1] sgn (𝜉 − 0.5) , (32)

where 𝑑∗, 𝑑 ∈ [𝐴, 𝐵] are the value of current solution and
neighboring solution, respectively, and 𝜉 is generated by the
next probability density function, which makes the vehicle
number and starting time of one train with low benefit or
efficiency have a high adjustment chance. Consider

𝑦 = (𝛾 − 1) (𝑥 − 0.5) + 1, 𝑥 ∈ [0, 1] , (33)

where 𝛾 is determined by the indexes of train 𝑖. For train
vehicle number and starting time, it is given, respectively, by

𝛾 = 1 −
𝑊

𝑖
𝐶
𝑖
/𝐹

𝑖

avg (𝑊𝐶/𝐹)
,

𝛾 =
𝐶
𝑖
/𝑄

𝑖

avg (𝐶/𝑄)
,

(34)

where 𝑊
𝑖
is the passenger kilometer, 𝐹

𝑖
is the average

operating cost per vehicle, 𝐶
𝑖
is the total wait time and

transfer cost, and𝑄
𝑖
is the number of passengers on the train.

In formulas (28), (29), (30), and (32), the calculation of
their probabilities is mainly based on train’s service level, pas-
senger volume, operating costs, and the current temperature
as a parameter of SA, and the higher the current temperature
is, the larger their probabilities are.

With the above generation method of an initial solution
and a neighborhood solution, the general Algorithm 2 based
on SA for optimizing TOP is described as follows.

Algorithm 2. Consider the following.

Step 1 (initialization). Generate the initial feasible solution Ω
under the initial temperature𝑇

0
and then calculate the objec-

tive value 𝑍(Ω) based on simulating passenger train choice
and calculating passenger travel costs with Algorithm 1. Set
𝛽 = 0 as the current running times of the outer cycle.
Let 𝑛 = 0 be the current running times of the inner cycle
and let 𝑇 = 𝑇

0
be the current temperature. Set 𝑇min as the

minimum temperature of the outer cycle andΥ as the number
of iterations at each temperature.

Step 2 (construction of neighborhood). Generate a new
solution Ω󸀠 and calculate its objective value corresponding
to 𝑍(Ω󸀠) based on simulating passenger train choice and
calculating passenger travel costs with Algorithm 1.

Step 3 (metropolis sampling). When 𝑍(Ω) > 𝑍(Ω󸀠), then set
Ω = Ω󸀠; otherwise, if exp(Δ𝑍/𝑇) > rand (rand is a random
number in (0, 1) and Δ𝑍 is the difference between them, the
current and optimal solution), then letΩ = Ω

󸀠. Then, set 𝑛 =
𝑛 + 1.

Step 4 (test of the termination criterion of the inner cycle). If
𝑛 = Υ, terminate the inner cycle and let 𝛽 = 𝛽 + 1; otherwise,
return to Step 2.

Step 5 (cooling schedule). Calculate the temperature 𝑇(𝛽).

Step 6 (test of the termination criterion of the outer cycle).
When 𝑇(𝑘) ≤ 𝑇min, terminate this algorithm and output the
optimal solution; otherwise, return to Step 2.
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Table 1: Parameter values of model (M1).

Symbol Value Unit Symbol Value Unit
𝜌 2.0 — 𝜒

0
4200 ¥/vehicle

𝜔 25000 ¥/train 𝜒 6.5 ¥/vehicle⋅km
𝜓 31.5 ¥/train⋅km 𝑏 10 Vehicle
𝜙 2.5 ¥/passenger⋅km 𝜑 80 Passenger/vehicle
𝑡
𝑠

6:30 — 𝑡
𝑒

22:00 —
𝜏
𝑓

6 Min 𝜏
𝑑

8 Min
V 200 Km/h 𝜏󸀠

𝑒
1 Min

𝜏
󸀠󸀠

𝑒
1 Min 𝑞 200 Passenger

𝜉 150 Passenger/min 𝜆 80 ¥/h

Table 2: Parameter values of algorithm.

Symbol Value Unit Symbol Value Unit
𝑀 15500 Passenger⋅min ℓ 0.5 —
𝜍 0.4 — 𝑇

0
1000 —

𝑇min 1 — Υ 50 —

5. Numerical Studies in Changzhutan Intercity
Rail Network

TheChangzhutan intercity rail network in the cluster includ-
ing the cities of Changsha, Zhuzhou, and Xiangtan of China
is planned to be completed in 2016. It consists of 21 stations
and has the total length of 96 km. The above algorithm
is developed with computer language C# on the platform
of Microsoft Visual Studio.net and runs on the computer
with the system of Microsoft Windows XP (Home Edition),
RAM configuration of Pentium(R) Dual-Core CPU E5800,
3.19GHz, 2.96GB. The values of parameters in model (M1)
and its solving algorithm are given in Tables 1 and 2, respec-
tively.

Firstly, some observations on the convergence process of
the algorithm with the value of 𝛼 being 0.2, 0.5, and 0.8,
respectively, are made.The change relations between the best
objective values with the total computing times of algorithm
running are shown in Figure 1. As seen from it, the objective
values decline sharply with the computing time in the first
10 minutes or so for both three instances and then drop
slowly until about 17 minutes. After that, they became stable,
which indicates that the algorithm has converged to a better
solution.

Table 3 shows the optimization results with the value of
𝛼 being 0.4, 0.6, and 0.8, respectively. From these results,
passenger average wait time and each operating cost vary
sharply with a different value of 𝛼, but the differences of
average transfer cost, proportion of transfer passengers, and
passenger in-vehicle speed are smaller. This is because the
number of operating trains rising with the increase of 𝛼
mainly determines the enterprise operating cost, and the
higher the trains’ departure frequency is, the shorter the wait
time varying passengers have. But trains can have a high
travel speed, and their arrival and departure time can connect
well, no matter how many trains there are.
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Figure 1: Convergence of the solutionwith different values ofweight
para 𝛼.

For different values of 𝛼, the percentage distributions of
passenger wait time are shown in Figure 2. As we can see,
regardless of 𝛼 = 0.4, 𝛼 = 0.6, or 𝛼 = 0.8, their passenger
percentage distributions are similar to a normal distribution.
But their wait time with the maximum percentage increases
from 10.2min to 11.8min and then to 18.3min with the
increase of 𝛼.Thewait time of 75% of the passengers ismainly
concentrated in 0 to 16min both when 𝛼 = 0.4 and 𝛼 = 0.6,
and that of 80% of the passengers is located in 0 to 20min
while 𝛼 = 0.8. The maximum wait time of these three cases is
30min, which is the ultimate value passengers can bear.
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Table 3: Optimization results with different value of 𝛼.

The value of weight para 𝛼 0.4 0.6 0.8
Average wait time per passenger (min) 13.6 14.1 22.2
Average transfer time per passenger (min) 19.6 20.2 21.5
Average transfer additional cost per passenger (min) 39.2 40.4 43.0
The proportion of transfer passenger (%) 11.3 12.5 12.2
Passenger in-vehicle speed (km/h) 172.4 171.6 172.8
Train organization cost (¥) 3550000 3175000 2725000
Rail line cost (¥) 237069 231030 206010
Rail vehicle cost (¥) 458272 435136 334520
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Figure 2: Distribution of passenger wait time.

The percentage distributions of passenger transfer time
with a different value of 𝛼 are shown in Figure 3. As passenger
average walking time for each transfer is assumed to be
10min, passenger minimum transfer times when 𝛼 = 0.4,
𝛼 = 0.6, and 𝛼 = 0.8 are all 10min. As seen in Figure 3,
the transfer time with the maximum percentage of about 18%
does not vary with the different value of 𝛼, and it is 16min or
so, corresponding to a passenger transfer wait time of 6min,
in all three cases. Moreover, the transfer time of 90% of the
transfer passengers is mainly concentrated in 10 to 24min.
Through a comprehensive comparison of the transfer time
and the transfer passenger number of three cases, it can be
found that the average transfer time and total number of
transfer passenger with 𝛼 = 0.4 are slightly less than these
with 𝛼 = 0.8, but their differences are very small, which
indicates that the factor 𝛼 has a little effect on passenger
service level of transfer.

For determining the influence of weight parameter 𝛼, the
objective values composed of enterprise operating cost and
passenger travel cost are calculated with different values of
𝛼, and the change in these two partial costs for various 𝛼 is
shown in Figure 4. As we can see, operating cost decreases
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Figure 3: Distribution of passenger transfer time.

rapidly when 𝛼 increases from 0.1 to 0.3, and later it has
a relative slow-down speed as 𝛼 continues to increase.
However, travel time increases smoothly with 𝛼 increasing
from 0.1 to 0.9. A balance with the minimum of their total
can be made between these two parts when 𝛼 = 0.7 is taken
as a reasonable value.

6. Conclusion and Further Study

In this paper, for the integrated optimization of train plan-
ning and train scheduling, based on analyzing passenger
travel costs and enterprise operating costs, we present their
integrated optimization model aiming to minimize both
passenger and enterprise costs with the constraints of trains
operating and build a solution algorithm based on SA
algorithm. From the analysis of the optimization results for
the Changzhutan intercity rail network, the proposed model
and algorithm can effectively obtain a satisfactory TOP, and a
solution with the total minimumof operating costs and travel
costs can be reached when the value of weight parameter 𝛼 is
about 0.7.
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Figure 4: Relationship between objective function values and
weight parameter 𝛼.

As passenger demand of intercity rail largely depends
on their service level under the competitive environment
between railway and highway, one further research area is
to optimize TOP considering this effect. Another one is to
study it involving the allocation of vehicles to train, which can
determine more exactly the train operating costs.
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way timetabling using Lagrangian relaxation,” Transportation
Science, vol. 32, no. 4, pp. 358–369, 1998.

[14] M. J. Dorfman and J. Medanic, “Scheduling trains on a railway
network using a discrete event model of railway traffic,” Trans-
portation Research Part B: Methodological, vol. 38, no. 1, pp. 81–
98, 2004.

[15] F. Li, Z. Y. Gao, K. P. Li, and L. X. Yang, “Efficient scheduling
of railway traffic based on global information of train,” Trans-
portation Research Part B: Methodological, vol. 42, no. 10, pp.
1008–1030, 2008.

[16] X. Xu, K. Li, L. Yang, and J. Ye, “Balanced train timetabling on a
single-line railway with optimized velocity,”Applied Mathemat-
ical Modelling, vol. 38, no. 3, pp. 894–909, 2014.

[17] J. C. Jong, S. Chang, and Y. C. R. Lai, “Development of a two-
stage hybridmethod for solving high speed rail train scheduling
problem,” Annals of Operations Research, vol. 42, no. 8, pp. 212–
226, 2012.

[18] S. K. Sahana, A. Jain, and P. K. Mahanti, “Ant colony optimiza-
tion for train scheduling: an analysis,” International Journal of
Intelligent Systems and Applications, vol. 6, no. 2, pp. 321–342,
2014.
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