24 research outputs found

    The LiaFSR and BsrXRS Systems Contribute to Bile Salt Resistance in Enterococcus faecium Isolates

    Get PDF
    Two-component systems (TCSs) are dominant regulating components in bacteria for responding to environmental stimuli. However, little information is available on how TCSs in Enterococcus faecium respond to bile salts – an important environmental stimulus for intestinal bacteria. In this study, the gene expression of 2 TCSs, BsrXRS and LiaFSR, was positively correlated with survival rates of different E. faecium isolates during exposure to ox gall. Moreover, gene disruptions of bsrR, bsrS, liaS, and liaR significantly reduced the survival rates of E. faecium in the presence of ox gall. Finally, EMSA results indicated that BsrR functioned as a transcription regulator for expression of its own gene as well as lipoate-protein ligase A (lplA). Additional 27 potential target genes by BsrR were revealed through in silico analyses. These findings suggest that BsrXRS and LiaFSR systems play important roles in bile salt resistance in E. faecium

    Characterization of conducting-polymer-based bimorph vibration sensors

    Get PDF
    This paper presents theoretical and experimental investigation of mechanical-electrical properties of conducting polymers based bimorph sensors. A material parameter, hCP , is proposed to represent linear relationship between induction charge and the applied external deformation. Based on this assumption, a constitutive equation for bimorph sensors under steady-state external loadings are constructed and then solved. Mechanical-electrical properties of bimorph sensors are experimentally studied using both vibration-amplitude sweep mode and frequency sweep mode. The material parameter hCP , is identified by comparing theoretical analysis and experimental results. The applications of conducting polymers based bimorph sensors in smart structures are also discussed

    Regulation of Milk Protein Synthesis by Free and Peptide-Bound Amino Acids in Dairy Cows

    No full text
    Milk protein (MP) synthesis in the mammary gland of dairy cows is a complex biological process. As the substrates for protein synthesis, amino acids (AAs) are the most important nutrients for milk synthesis. Free AAs (FAAs) are the main precursors of MP synthesis, and their supplies are supplemented by peptide-bound AAs (PBAAs) in the blood. Utilization of AAs in the mammary gland of dairy cows has attracted the great interest of researchers because of the goal of increasing MP yield. Supplying sufficient and balanced AAs is critical to improve MP concentration and yield in dairy cows. Great progress has been made in understanding limiting AAs and their requirements for MP synthesis in dairy cows. This review focuses on the effects of FAA and PBAA supply on MP synthesis and their underlying mechanisms. Advances in our knowledge in the field can help us to develop more accurate models to predict dietary protein requirements for dairy cows MP synthesis, which will ultimately improve the nitrogen utilization efficiency and lactation performance of dairy cows

    Synthesis, modeling, and characterization of conducting polymers

    Get PDF
    This paper presents synthesis and characterization of polypyrrole based conducting polymers in terms of electronic and mechanical disciplines. Using the electrochemical polymerization approach, conducting polymer samples with different dimensions (length, width, and thickness) was fabricated. For each sample, both sinusoidal and step excitations were used to study its mechanical and electrical properties. An equivalent electric circuit based on constant phase element (CPE) is proposed to model such responses. Electrochemical impedance spectroscopy (EIS) method was used to identify the relationship between the dimensions of conducting polymers and model elements parameters

    Effective Antimicrobial Activity of Plectasin-Derived Antimicrobial Peptides against Staphylococcus aureus Infection in Mammary Glands

    No full text
    Staphylococcus aureus (S. aureus) is the causative agent for a wide variety of illnesses ranging from minor skin infections to life-threatening diseases. Development of antibiotic resistance by the bacteria has rendered many antibiotics ineffective. It has been known that plectasin-derived antimicrobial peptides (AMPs; NZ2114 and MP1102) are promising alternatives to antibiotics. However, their activities against S. aureus in mammary glands were unknown. Our objective was to assess the antimicrobial activities of NZ2114 and MP1102 against S. aureus in milk, in cultured mammary epithelial cells, and in a mouse model in order to evaluate their potentials as anti-mastitis agents. NZ2114 and MP1102 showed in vitro bactericidal effects against S. aureus in both the culture medium and the milk. NZ2114 and MP1102 at the concentration of 100 μg/mL reduced the number of S. aureus by almost 100% within 4 h in processed bovine milk. Similarly, both NZ2114 and MP1102 were efficient to reduce the number of internalized S. aureus in cultured mammary epithelial cells. Finally, both AMPs significantly reduced the S. aureus load and concentrations of TNF-α and IL-6 in mammary glands, compared to a buffer control in the mouse model. Our results suggest that NZ2114 and MP1102 may be used to treat S. aureus-induced mastitis

    Correlation between age and handgrip strength (kg).

    No full text
    <p>a) males, left hands; b) males, right hands; c) females, left hands; d) females, right hands.</p

    Descriptive statistics of participants.

    No full text
    <p>Descriptive statistics of participants.</p

    Summer Maize Growth Estimation Based on Near-Surface Multi-Source Data

    No full text
    Rapid and accurate crop chlorophyll content estimation and the leaf area index (LAI) are both crucial for guiding field management and improving crop yields. This paper proposes an accurate monitoring method for LAI and soil plant analytical development (SPAD) values (which are closely related to leaf chlorophyll content; we use the SPAD instead of chlorophyll relative content) based on the fusion of ground–air multi-source data. Firstly, in 2020 and 2021, we collected unmanned aerial vehicle (UAV) multispectral data, ground hyperspectral data, UAV visible-light data, and environmental cumulative temperature data for multiple growth stages of summer maize, respectively. Secondly, the effective plant height (canopy height model (CHM)), effective accumulation temperature (growing degree days (GDD)), canopy vegetation index (mainly spectral vegetation index) and canopy hyperspectral features of maize were extracted, and sensitive features were screened by correlation analysis. Then, based on single-source and multi-source data, multiple linear regression (MLR), partial least-squares regression (PLSR) and random forest (RF) regression were used to construct LAI and SPAD inversion models. Finally, the distribution of LAI and SPAD prescription plots was generated and the trend for the two was analyzed. The results were as follows: (1) The correlations between the position of the hyperspectral red edge and the first-order differential value in the red edge with LAI and SPAD were all greater than 0.5. The correlation between the vegetation index, including a red and near-infrared band, with LAI and SPAD was above 0.75. The correlation between crop height and effective accumulated temperature with LAI and SPAD was above 0.7. (2) The inversion models based on multi-source data were more effective than the models made with single-source data. The RF model with multi-source data fusion achieved the highest accuracy of all models. In the testing set, the LAI and SPAD models’ R2 was 0.9315 and 0.7767; the RMSE was 0.4895 and 2.8387. (3) The absolute error between the extraction result of each model prescription map and the measured value was small. The error between the predicted value and the measured value of the LAI prescription map generated by the RF model was less than 0.4895. The difference between the predicted value and the measured value of the SPAD prescription map was less than 2.8387. The LAI and SPAD of summer maize first increased and then decreased with the advancement of the growth period, which was in line with the actual growth conditions. The research results indicate that the proposed method could effectively monitor maize growth parameters and provide a scientific basis for summer maize field management
    corecore