43 research outputs found

    Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests

    Get PDF
    Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16–60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume–soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration

    Determinants of change in subtropical tree diameter growth with ontogenetic stage

    Full text link
    We evaluated the degree to which relative growth rate (RGR) of saplings and large trees is related to seven functional traits that describe physiological behavior and soil environmental factors related to topography and fertility for 57 subtropical tree species in Dinghushan, China. The mean values of functional traits and soil environmental factors for each species that were related to RGR varied with ontogenetic stage. Sapling RGR showed greater relationships with functional traits than large-tree RGR, whereas large-tree RGR was more associated with soil environment than was sapling RGR. The strongest single predictors of RGR were wood density for saplings and slope aspect for large trees. The stepwise regression model for large trees accounted for a larger proportion of variability (R 2 = 0.95) in RGR than the model for saplings (R 2 = 0.55). Functional diversity analysis revealed that the process of habitat filtering likely contributes to the substantial changes in regulation of RGR as communities transition from saplings to large trees. © 2014 Springer-Verlag Berlin Heidelberg

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Spatial distribution of species diversity indices in a monsoon evergreen broadleaved forest at Dinghushan Mountain

    No full text
    Sampling scale is important in exploring the structure and dynamics of plant communities. Spatial patterns and formation mechanisms of species diversity are fundamental issues in community ecology. Theeffect of scale on species diversity patterns and their interpretation has attracted particular attention. In this paper, we studied spatial distribution patterns of Simpson, Shannon-Weiner, and Pielou’s evenness indices within a 20-ha plot as well as relationships of these indices with sampling size in a monsoon evergreen broadleaved forest at Dinghushan Mountain, Guangdong Province. The three indices all strongly depended on region of the study area, and such a regional pattern was scale dependent. Spatial distribution patterns also differed depending on which of two measures of diversity variation, viz. variance and coefficient of variation, we used. Variance of the three indices was unimodal with increasing scale, and was maximum at the 80 m×100 m scale, while the coefficient of variation decreased with increasing scale. For the Shannon-Weiner and Pielou’s evenness indices, coefficient of variation dramatically reduced when the scale size was less than 20 m × 25 m, and then followed by a more gentle change. Our results showed that sampling scale and region should be taken into account when studying species diversity in this 20 ha monsoon evergreen broadleaved forest

    Vertical Variation in Leaf Traits and Crown Structure Promote the Coexistence of Forest Tree Species

    No full text
    Vertical stratification in trees may respond to selective pressures to enhance light interception and utilization; therefore, the vertical functional variation in leaf traits may indicate niche partitioning within forests. In this study, vertical variations in leaf and crown structure traits of seven common tree species were analysed with respect to differences between species in different height groups, within the same height range, in the same species across tree height, and different parts of the individual tree crown to reveal coexistence mechanisms in subtropical forest tree species. There were multiple levels of trait variation in the vertical dimension, validating the existence of vertical niche differentiation in subtropical forest species. The functional trait differences arose among different height groups, among species co-occurring within the same height range, in the same species across tree height, and among different parts of the individual tree crown. Variation in comparative advantages, which was characterised by those traits between species across different height ranges, was also one of the manifestations of niche differentiation in the vertical dimension. Moreover, contrasting results between lower height ranges and higher ranges in the relationship between species’ differences in functional traits and species’ difference of abundance were found, further confirming that there was obvious vertical niche separation in the community. This study emphasised the importance of vertical variation in species’ performances in elucidating the mechanisms of tree species coexistence in subtropical forests

    Functional Diversity and Its Influencing Factors in a Subtropical Forest Community in China

    No full text
    Functional diversity is considered a key link between ecosystem functions and biodiversity, and forms the basis for making community diversity conservation strategies. Here, we chose a subtropical forest community in China as the research object, which is unique in that other regions of the world at the same latitude have almost no vegetation cover. We measured 17 functional traits of 100 plant species and calculated seven different functional diversity indices, based on functional richness, evenness, and divergence. We found that most functional diversity and species diversity indices significantly differed with plant habit. There was a significant positive correlation among functional richness indices. However, functional divergence indices, multidimensional functional divergence (FDiv), and Rao’s quadratic entropy index (RaoQ) were significantly negatively correlated, and RaoQ and functional divergence indices (FDis) were uncorrelated. The correlations between three types (richness, evenness, and divergence) of functional diversity indices and three species diversity indices were different. Lineage regression results generally showed that three functional richness indices (Average distance of functional traits (MFAD), Functional volume (FRic) and Posteriori functional group richness (FGR)) were increased with three species diversity indices (species richness (S), Shannon-Wiener index (H) and Pielou index (E)). The functional evenness index (FEve) decreased with species richness (S), Shannon-Wiener index (H) and increased with species evenness (Pielou index (E)), but the change trends were small. All three types of functional diversity indices declined with altitude, although altitude had a weak influence on them. Other environmental factors affected the functional diversity of the community. Here, soil total phosphorus (TP) was the most critical environmental factor and the convex had the least effect on functional diversity in our subtropical forest community. These results will contribute to our understanding of functional diversity in subtropical forests, and provide a basis for biodiversity conservation in this region

    Testing the competition-colonization trade-off and its correlations with functional trait variations among subtropical tree species

    Get PDF
    The competition-colonization trade-off, by which species can partition spatial niches, is a potentially important mechanism allowing the maintenance of species diversity in plant communities. We examined whether there was evidence for this trade-off among tree species in a subtropical forest and how it correlated with eight functional traits. We developed and estimated a metric for colonization ability that incorporates both fecundity and seed dispersal based on seed trap data and the sizes and distributions of adult trees. Competitive ability was estimated as survival probability under high crowding conditions based on neighborhood models. Although we found no significant relationship between colonization and competitive abilities, there was a significant negative correlation between long distance dispersal ability and competitive ability at the 5 cm size class. Colonizers had traits associated with faster growth, such as large leaves and low leaf lamina density, whereas competitors had traits associated with higher survival, such as dense wood. Our results imply that any trade-off between competition and colonization may be more determined by dispersal ability than by fecundity, suggesting that seed dispersal is an important contributor to diversity maintenance. Future work should test how competitive ability covaries with the components of colonization ability, as we did here

    Tree Species Classification Using Plant Functional Traits and Leaf Spectral Properties along the Vertical Canopy Position

    No full text
    Plant functional traits are rarely used in tree species classification, and the impact of vertical canopy positions on collecting samples for classification also remains unclear. We aim to explore the feasibility and effectiveness of leaf traits in classification, as well as to detect the effect of vertical position on classification accuracy. This work will deepen our understanding of the ecological mechanism of natural forest structure and succession from new perspectives. In this study, we collected foliar samples from three canopy layers (upper, middle and lower) and measured their spectra, as well as eight well-known leaf traits. We used a leaf hyperspectral reflectance (LHR) dataset, leaf functional traits (LFT) dataset and LFT + LHR dataset to classify six dominant tree species in a subtropical evergreen broad-leaved forest. Our results showed that the LFT + LHR dataset achieved the highest classification results (overall accuracy (OA) = 77.65% and Kappa = 0.73), followed by the LFT dataset (OA = 74.26% and Kappa = 0.69) and the LHR dataset (OA = 69.06% and Kappa = 0.63). Along the vertical canopy, the OA and Kappa increased from the lower to the upper layers, and the combination data of the three canopy layers achieved the highest accuracy. For the individual tree species, the shade-tolerant species (including Machilus chinensis, Cryptocarya chinensis and Cryptocarya concinna) produced higher accuracies than the light-demanding species (including Schima superba and Castanopsis chinensis). Our results provide an approach for enhancing tree species recognition from the plant physiology and biochemistry perspective and emphasize the importance of vertical direction in forest community research

    Tree Species Classification Using Plant Functional Traits and Leaf Spectral Properties along the Vertical Canopy Position

    No full text
    Plant functional traits are rarely used in tree species classification, and the impact of vertical canopy positions on collecting samples for classification also remains unclear. We aim to explore the feasibility and effectiveness of leaf traits in classification, as well as to detect the effect of vertical position on classification accuracy. This work will deepen our understanding of the ecological mechanism of natural forest structure and succession from new perspectives. In this study, we collected foliar samples from three canopy layers (upper, middle and lower) and measured their spectra, as well as eight well-known leaf traits. We used a leaf hyperspectral reflectance (LHR) dataset, leaf functional traits (LFT) dataset and LFT + LHR dataset to classify six dominant tree species in a subtropical evergreen broad-leaved forest. Our results showed that the LFT + LHR dataset achieved the highest classification results (overall accuracy (OA) = 77.65% and Kappa = 0.73), followed by the LFT dataset (OA = 74.26% and Kappa = 0.69) and the LHR dataset (OA = 69.06% and Kappa = 0.63). Along the vertical canopy, the OA and Kappa increased from the lower to the upper layers, and the combination data of the three canopy layers achieved the highest accuracy. For the individual tree species, the shade-tolerant species (including Machilus chinensis, Cryptocarya chinensis and Cryptocarya concinna) produced higher accuracies than the light-demanding species (including Schima superba and Castanopsis chinensis). Our results provide an approach for enhancing tree species recognition from the plant physiology and biochemistry perspective and emphasize the importance of vertical direction in forest community research
    corecore