331 research outputs found

    Allele Size Miscalling due to the Pull-Up Effect Influencing Size Standard Calibration in Capillary Electrophoresis: A Case Study Using HEX Fluorescent Dye in Microsatellites

    Get PDF
    Microsatellites are important genetic markers and have been broadly employed in many genetic studies. Currently, polymorphisms in microsatellites are often detected by an automated system of capillary electrophoresis with fluorescent dyes. In this situation, different dye combinations may cause pull-up/bleed-through problems, which introduce noise signals from one dye channel into another, causing genotyping errors. Here, we report the detection of such a problem at two microsatellite loci that used the HEX dye. Using three datasets, we tested for noise effects in four allele-scoring programmes: Genemapper, Genemarker, Gelquest and Fragman. We found that, because some allele sizes were identical or close to the size of one of the internal size standards, all four programmes gave allele size calling errors due to wrongly identifying pull-up signals as the internal size standard. In addition, because allele miscalling in this study was caused by the fluorescent dye that the microsatellites used introducing noise of the same colour as the internal size standard used, the pull-up correction function in Genemapper, Genemarker and Fragman failed to deal with this. Considering that pull-up peak scoring errors can occur with any dye colour, the phenomenon is not limited to the current HEX dye. Using different software and visual scoring of each result will allow accurate sizing of microsatellite alleles

    Transcriptome profiling of the fifth-stage larvae of Angiostrongylus cantonensis by next-generation sequencing

    Get PDF
    Angiostrongylus cantonensis is an important zoonotic nematode. It is the causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. However, information of this parasite at the genomic level is very limited. In the present study, the transcriptomic profiles of the fifth-stage larvae (L5) of A. cantonensis were investigated by next-generation sequencing (NGS). In the NGS database established from the larvae isolated from the brain of Sprague–Dawley rats, 31,487 unique genes with a mean length of 617 nucleotides were assembled. These genes were found to have a 46.08 % significant similarity to Caenorhabditis elegans by BLASTx. They were then compared with the expressed sequence tags of 18 other nematodes, and significant matches of 36.09–59.12 % were found. Among these genes, 3,338 were found to participate in 124 Kyoto Encyclopedia of Genes and Genomes pathways. These pathways included 1,514 metabolisms, 846 genetic information processing, 358 environmental information processing, 264 cellular processes, and 91 organismal systems. Analysis of 30,816 sequences with the gene ontology database indicated that their annotations included 5,656 biological processes (3,364 cellular processes, 3,061 developmental processes, and 3,191 multicellular organismal processes), 7,218 molecular functions (4,597 binding and 3,084 catalytic activities), and 4,719 cellular components (4,459 cell parts and 4,466 cells). Moreover, stress-related genes (112 heat stress and 33 oxidation stress) and genes for proteases (159) were not uncommon. This study is the first NGS-based study to set up a transcriptomic database of A. cantonensis L5. The results provide new insights into the survival, development, and host–parasite interactions of this blood-feeding nematode. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00436-013-3495-z) contains supplementary material, which is available to authorized users

    Decreased Blood Levels of Oxytocin in Ketamine-Dependent Patients During Early Abstinence

    Get PDF
    Background: Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is a common drug of abuse worldwide. Existing evidence suggest a disruption of oxytocin system involves in the development of addiction. In this study, we aimed to investigate the role of oxytocin in ketamine addiction by measuring the blood oxytocin levels in ketamine-dependent (KD) patients.Methods: Sixty-five KD patients and 65 controls were enrolled. Fasting plasma levels of oxytocin were determined at baseline and 1 and 2 weeks after ketamine withdrawal. Ketamine use variables, Beck Depression Inventory, Beck Anxiety Inventory (BAI), Visual Analog Scale for craving, and Childhood Trauma Questionnaire-short form were assessed in KD patients.Results: KD patients had significantly lower levels of oxytocin at baseline compared to controls (5.89 ± 2.13 vs. 9.53 ± 4.17 ng/mL, P < 0.001). Oxytocin levels increased after one (6.74 ± 2.63, P < 0.002) and 2 weeks (6.89 ± 2.69, P = 0.01) of withdrawal in KD patient despite the levels were still lower than controls (P = 0.001 and 0.002, respectively). The clinical variables did not correlate with baseline oxytocin levels except BAI scores, which showed a negative correlation with the levels (r = −0.263; P = 0.039).Conclusion: We found a distinctively reduced oxytocin level in KD patients and the level did not normalize after early abstinence. Lower oxytocin might be associated with anxious phenotype of ketamine dependence. These results suggest that oxytocin system dysregulated following chronic ketamine abuse and might provide insight in evaluating the potential therapeutic use of oxytocin for treating ketamine dependence

    Return of 4U~1730--22 after 49 years silence: the peculiar burst properties of the 2021/2022 outbursts observed by Insight-HXMT

    Full text link
    After in quiescence for 49 years, 4U~1730--22 became active and had two outbursts in 2021 \& 2022; ten thermonuclear X-ray bursts were detected with Insight-HXMT. Among them, the faintest burst showed a double-peaked profile, placing the source as the 5th accreting neutron star (NS) exhibiting double/triple-peaked type-I X-ray bursts; the other bursts showed photospheric radius expansion (PRE). The properties of double-peaked non-PRE burst indicate that it could be related to a stalled burning front. For the five bright PRE bursts, apart from the emission from the neutron star (NS) surface, we find the residuals both in the soft (10 keV) X-ray band. Time-resolved spectroscopy reveals that the excess can be attributed to an enhanced pre-burst/persistent emission or the Comptonization of the burst emission by the corona/boundary-layer. We find, the burst emission shows a rise until the photosphere touches down to the NS surface rather than the theoretical predicted constant Eddington luminosity. The shortage of the burst emission in the early rising phase is beyond the occlusion by the disk. We speculate that the findings above correspond to that the obscured part (not only the lower part) of the NS surface is exposed to the line of sight due to the evaporation of the obscured material by the burst emission, or the burst emission is anisotropic (ξ>1\xi>1) in the burst early phase. In addition, based on the average flux of PRE bursts at their touch-down time, we derive a distance estimation as 10.4 kpc.Comment: arXiv admin note: substantial text overlap with arXiv:2208.13556; text overlap with arXiv:2208.1212

    Cryopreservation of Neurospheres Derived from Human Glioblastoma Multiforme

    Get PDF
    Cancer stem cells have been shown to initiate and sustain tumor growth. In many instances, clinical material is limited, compounded by a lack of methods to preserve such cells at convenient time points. Although brain tumor-initiating cells grown in a spheroid manner have been shown to maintain their integrity through serial transplantation in immune-compromised animals, practically, it is not always possible to have access to animals of suitable ages to continuously maintain these cells. We therefore explored vitrification as a cryopreservation technique for brain tumor-initiating cells. Tumor neurospheres were derived from five patients with glioblastoma multiforme (GBM). Cryopreservation in 90% serum and 10% dimethyl sulfoxide yielded greatest viability and could be explored in future studies. Vitrification yielded cells that maintained self-renewal and multipotentiality properties. Karyotypic analyses confirmed the presence of GBM hallmarks. Upon implantation into NOD/SCID mice, our vitrified cells reformed glioma masses that could be serially transplanted. Transcriptome analysis showed that the vitrified and nonvitrified samples in either the stem-like or differentiated states clustered together, providing evidence that vitrification does not change the genotype of frozen cells. Upon induction of differentiation, the transcriptomes of vitrified cells associated with the original primary tumors, indicating that tumor stem-like cells are a genetically distinct population from the differentiated mass, underscoring the importance of working with the relevant tumor-initiating population. Our results demonstrate that vitrification of brain tumor-initiating cells preserves the biological phenotype and genetic profiles of the cells. This should facilitate the establishment of a repository of tumor-initiating cells for subsequent experimental designs

    The Dog Mite, Demodex canis: Prevalence, Fungal Co-Infection, Reactions to Light, and Hair Follicle Apoptosis

    Get PDF
    Infection rate, reaction to light, and hair follicle apoptosis are examined in the dogmite, Demodex canis Leydig (Prostigmata: Demodicidae), in dogs from the northern area of Taiwan. An analysis of relevant samples revealed 7.2% (73/1013) prevalence of D. canis infection. Infection during the investigation peaked each winter, with an average prevalence of 12.5% (32/255). The infection rates significantly varied in accordance with month, sex, age, and breed (p < 0.05). Most of the lesions were discovered on the backs of the infected animals, where the infection rate was 52.1% (38/73) (P < 0.05). The epidemiologic analysis of infection based on landscape area factor, found that employing a map-overlapping method showed a higher infection rate in the eastern distribution of Taiwan's northern area than other areas. Isolation tests for Microsporum canis Bodin (Onygenales: Arthrodermataceae) and Trichophyton mentagrophyte Robin (Blanchard) on the D. canis infected dogs revealed prevalence rates of 4.4% (2/45) and 2.2% (1/45), respectively. Observations demonstrated that D. canis slowly moved from a light area to a dark area. Skin samples were examined for cellular apoptosis by activated caspase3 immunohistochemical staining. Cells that surrounded the infected hair follicles were activated caspase3-positive, revealing cell apoptosis in infected follicles via the activation of caspase3

    5-Hydroxymethylcytosine is a predominantly stable DNA modification.

    Get PDF
    5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.We would like to acknowledge the CRUK CI Flow Cytometry and Histopathology/ISH core facilities for their contributions, David Oxley, Clive d’Santos and Donna Michelle-Smith for their support with mass spectrometry, Xiangang Zou for his help with mES cells and David Tannahill for critical reading of the manuscript. This work was funded by Cancer Research UK (all authors) and the Wellcome Trust Senior Investigator Award (S.B.).This is the accepted manuscript. The final version is available from Nature Chemistry at http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2064.html

    Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    Get PDF
    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes

    Phosphoproteomics Identifies Oncogenic Ras Signaling Targets and Their Involvement in Lung Adenocarcinomas

    Get PDF
    Ras is frequently mutated in a variety of human cancers, including lung cancer, leading to constitutive activation of MAPK signaling. Despite decades of research focused on the Ras oncogene, Ras-targeted phosphorylation events and signaling pathways have not been described on a proteome-wide scale.By functional phosphoproteomics, we studied the molecular mechanics of oncogenic Ras signaling using a pathway-based approach. We identified Ras-regulated phosphorylation events (n = 77) using label-free comparative proteomics analysis of immortalized human bronchial epithelial cells with and without the expression of oncogenic Ras. Many were newly identified as potential targets of the Ras signaling pathway. A majority (∼60%) of the Ras-targeted events consisted of a [pSer/Thr]-Pro motif, indicating the involvement of proline-directed kinases. By integrating the phosphorylated signatures into the Pathway Interaction Database, we further inferred Ras-regulated pathways, including MAPK signaling and other novel cascades, in governing diverse functions such as gene expression, apoptosis, cell growth, and RNA processing. Comparisons of Ras-regulated phosphorylation events, pathways, and related kinases in lung cancer-derived cells supported a role of oncogenic Ras signaling in lung adenocarcinoma A549 and H322 cells, but not in large cell carcinoma H1299 cells.This study reveals phosphorylation events, signaling networks, and molecular functions that are regulated by oncogenic Ras. The results observed in this study may aid to extend our knowledge on Ras signaling in lung cancer
    corecore