7 research outputs found

    Polarization-Engineering in III-V Nitride Heterostructures: New Opportunities For Device Design

    Full text link
    The role of spontaneous and piezoelectric polarization in III-V nitride heterostructure devices is discussed. Problems as well as opportunities in incorporating polarization in abrupt and graded heterojunctions composed of binary, ternary, and quaternary nitrides are outlined.Comment: 7 pages, 5 figure

    An Enhanced Plastic Optical Fiber-Based Surface Plasmon Resonance Sensor with a Double-Sided Polished Structure

    No full text
    An enhanced plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed by employing a double-sided polished structure. The sensor is fabricated by polishing two sides of the POF symmetrically along with the fiber axis, and a layer of Au film is deposited on each side of the polished region. The SPR can be excited on both polished surfaces with Au film coating, and the number of light reflections will be increased by using this structure. The simulation and experimental results show that the proposed sensor has an enhanced SPR effect. The visibility and full width at half maximum (FWHM) of spectrum can be improved for the high measured refractive index (RI). A sensitivity of 4284.8 nm/RIU is obtained for the double-sided POF-based SPR sensor when the measured liquid RI is 1.42. The proposed SPR sensor is easy fabrication and low cost, which can provide a larger measurement range and action area to the measured samples, and it has potential application prospects in the oil industry and biochemical sensing fields

    An Ultrasensitive Calcium Reporter System via CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells

    No full text
    Summary: Genetically encoded calcium indicator (GCaMP) proteins have been reported for imaging cardiac cell activity based on intracellular calcium transients. To bring human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) to the clinic, it is critical to evaluate the functionality of CMs. Here, we show that GCaMP6s-expressing hPSCs can be generated and used for CM characterization. By leveraging CRISPR-Cas9 genome editing tools, we generated a knockin cell line that constitutively expresses GCaMP6s, an ultrasensitive calcium sensor protein. We further showed that this clone maintained pluripotency and cardiac differentiation potential. These knockin hPSC-derived CMs exhibited sensitive fluorescence fluctuation with spontaneous contraction. We then compared the fluorescence signal with mechanical contraction signal. The knockin hPSC-derived CMs also showed sensitive response to isoprenaline treatment in a concentration-dependent manner. Therefore, the GCaMP6s knockin hPSC line provides a non-invasive, sensitive, and economic approach to characterize the functionality of hPSC-derived CMs. : Cell Engineering; Optical Imaging; Specialized Functions of Cells Subject Areas: Cell Engineering, Optical Imaging, Specialized Functions of Cell

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore