12 research outputs found

    Alendronate and omeprazole in combination reduce angiogenic and growth signals from osteoblasts

    No full text
    Objective: Due to gastrointestinal side effects of oral bisphosphonates (BPs), proton pump inhibitors (PPIs) are often prescribed. PPIs may enhance the risk of osteonecrosis of the jaw, a rare side effect of BPs. Therefore, the objective of this study was to evaluate the effects of the oral BP alendronate (ALN) and the PPI omeprazole (OME) alone and in combination on primary human osteoblasts and gingival fibroblasts in vitro. Methods: Human gingival fibroblasts and normal human osteoblasts were incubated with either 5 μM of ALN or 1 μM of OME, or ALN + OME for 1, 3, 7 or 14 days. Effect on viability was evaluated by the lactate dehydrogenase activity in the medium and on proliferation by quantifying 3H-thymidin incorporation. Multianalyte profiling of proteins in cell culture media was performed using the Luminex 200TM system to assess the effect on selected bone markers and cytokines. Results: The proliferation of osteoblasts and fibroblasts was reduced upon exposure to ALN + OME. ALN induced an early, temporary rise in markers of inflammation, and OME and ALN + OME promoted a transient decline. An initial increase in IL-13 occurred after exposure to all three options, whereas ALN + OME promoted IL-8 release after 7 days. OME and ALN + OME promoted a transient reduction in vascular endothelial growth factor (VEGF) from osteoblasts, whereas ALN and ALN + OME induced a late rise in VEGF from fibroblasts. Osteoprotegerin release was enhanced by ALN and suppressed by OME and ALN + OME. Conclusions: ALN + OME seemed to exaggerate the negative effects of each drug alone on human osteoblasts and gingival fibroblasts. The anti-proliferative effects, modulation of inflammation and impairment of angiogenesis, may induce unfavorable conditions in periodontal tissue facilitating development of osteonecrosis

    Alendronate and omeprazole in combination reduce angiogenic and growth signals from osteoblasts

    No full text
    Objective: Due to gastrointestinal side effects of oral bisphosphonates (BPs), proton pump inhibitors (PPIs) are often prescribed. PPIs may enhance the risk of osteonecrosis of the jaw, a rare side effect of BPs. Therefore, the objective of this study was to evaluate the effects of the oral BP alendronate (ALN) and the PPI omeprazole (OME) alone and in combination on primary human osteoblasts and gingival fibroblasts in vitro. Methods: Human gingival fibroblasts and normal human osteoblasts were incubated with either 5 μM of ALN or 1 μM of OME, or ALN + OME for 1, 3, 7 or 14 days. Effect on viability was evaluated by the lactate dehydrogenase activity in the medium and on proliferation by quantifying 3H-thymidin incorporation. Multianalyte profiling of proteins in cell culture media was performed using the Luminex 200TM system to assess the effect on selected bone markers and cytokines. Results: The proliferation of osteoblasts and fibroblasts was reduced upon exposure to ALN + OME. ALN induced an early, temporary rise in markers of inflammation, and OME and ALN + OME promoted a transient decline. An initial increase in IL-13 occurred after exposure to all three options, whereas ALN + OME promoted IL-8 release after 7 days. OME and ALN + OME promoted a transient reduction in vascular endothelial growth factor (VEGF) from osteoblasts, whereas ALN and ALN + OME induced a late rise in VEGF from fibroblasts. Osteoprotegerin release was enhanced by ALN and suppressed by OME and ALN + OME. Conclusions: ALN + OME seemed to exaggerate the negative effects of each drug alone on human osteoblasts and gingival fibroblasts. The anti-proliferative effects, modulation of inflammation and impairment of angiogenesis, may induce unfavorable conditions in periodontal tissue facilitating development of osteonecrosis

    Irisin promotes growth, migration and matrix formation in human periodontal ligament cells

    No full text
    Objective The objective of the study was to examine the effect of irisin on human periodontal ligament cells (hPDLCs) growth, migration and osteogenic behaviour in vitro. Materials and methods Primary hPDLCs and human osteoblasts (hOBs), used as positive controls, were cultured with irisin (10 and 100 ng/ml), and effect on cell proliferation was evaluated with 5-bromo-2`-deoxyuridine incorporation at 1, 2, and 3 days, and on migration capacity was investigated by scratch assay at 2, 6, and 24 h. Osteogenic behaviour was assessed with alkaline phosphatase activity, immunoassay at 3, 7, 14, and 21 days, and confocal laser scanning microscopy at 21 days. Mineralization was examined by Alizarin red staining at 21 days. Data were compared group wise using ANOVA tests. Results Irisin induced increased proliferation of primary hPDLCs and hOBs at all time points compared to untreated controls. This was confirmed by scratch assay where irisin enhanced migration of both hPDLCs and hOBs after 6 and 24 h compared to controls. Irisin treatment promoted osteogenic behaviour of both cell types by enhancement of extracellular matrix formation. In hPDLCs irisin increased expression of type I collagen, secretion of osteoblastogenesis related proteins osteocalcin and leptin, and calcium deposition/mineralization compared to controls at 21 days. In addition, to enhance calcium deposition/mineralization in hOBs, irisin increased expression of periostin, and secretion of osteoblastogenesis related proteins osteopontin, alkaline phosphatase and osteocalcin, as compared to controls at 21 days. Conclusions Primary hPDLCs responded to irisin treatment with enhanced cell growth, migration, and matrix formation in vitro

    Osteogenic potential of poly(ethylene glycol)-amorphous calcium phosphate composites on human mesenchymal stem cells

    No full text
    Synthetic hydrogel-amorphous calcium phosphate composites are promising candidates to substitute biologically sourced scaffolds for bone repair. While the hydrogel matrix serves as a template for stem cell colonisation, amorphous calcium phosphate s provide mechanical integrity with the potential to stimulate osteogenic differentiation. Here, we utilise composites of poly(ethylene glycol)-based hydrogels and differently stabilised amorphous calcium phosphate to investigate potential effects on attachment and osteogenic differentiation of human mesenchymal stem cells. We found that functionalisation with integrin binding motifs in the form of RGD tripeptide was necessary to allow adhesion of large numbers of cells in spread morphology. Slow dissolution of amorphous calcium phosphate mineral in the scaffolds over at least 21 days was observed, resulting in the release of calcium and zinc ions into the cell culture medium. While we qualitatively observed an increasingly mineralised extracellular matrix along with calcium deposition in the presence of amorphous calcium phosphate-loaded scaffolds, we did not observe significant changes in the expression of selected osteogenic markers

    An ameloblastin C-terminus variant is present in human adipose tissue

    No full text
    Objective: Transcriptional regulatory elements in the ameloblastin (AMBN) promoter indicate that adipogenesis may influence its expression. The objective here was to investigate if AMBN is expressed in adipose tissue, and have a role during differentiation of adipocytes. Design: AMBN expression was examined in adipose tissue and adipocytes by real-time PCR and ELISA. Distribution of ameloblastin was investigated by immunofluorescence in sections of human subcutaneous adipose tissue. The effect of recombinant proteins resembling AMBN and its processed products on proliferation of primary human pre-adipocytes and murine 3T3-L1 cell lines was measured by [3H]-thymidine incorporation. The effect on adipocyte differentiation was evaluated by the expression profile of the adipogenic markers PPARγ and leptin, and the content of lipids droplets (Oil-Red-O staining). Results: AMBN was found to be expressed in human adipose tissue, human primary adipocytes, and in 3T3-L1 cells. The C-terminus of the AMBN protein and a 45 bp shorter splice variant was identified in human subcutaneous adipose tissue. The expression of AMBN was found to increase four-fold during differentiation of 3T3-L1 cells. Administration of recombinant AMBN reduced the proliferation, and enhanced the expression of PPARγ and leptin in 3T3-L1 and human pre-adipocytes, respectively. Conclusions: The AMBN C-terminus variant was identified in adipocytes. This variant may be encoded from a short splice variant. Increased expression of AMBN during adipogenesis and its effect on adipogenic factors suggests that AMBN also has a role in adipocyte development

    An ameloblastin C-terminus variant is present in human adipose tissue

    No full text
    Objective: Transcriptional regulatory elements in the ameloblastin (AMBN) promoter indicate that adipogenesis may influence its expression. The objective here was to investigate if AMBN is expressed in adipose tissue, and have a role during differentiation of adipocytes. Design: AMBN expression was examined in adipose tissue and adipocytes by real-time PCR and ELISA. Distribution of ameloblastin was investigated by immunofluorescence in sections of human subcutaneous adipose tissue. The effect of recombinant proteins resembling AMBN and its processed products on proliferation of primary human pre-adipocytes and murine 3T3-L1 cell lines was measured by [3H]-thymidine incorporation. The effect on adipocyte differentiation was evaluated by the expression profile of the adipogenic markers PPARγ and leptin, and the content of lipids droplets (Oil-Red-O staining). Results: AMBN was found to be expressed in human adipose tissue, human primary adipocytes, and in 3T3-L1 cells. The C-terminus of the AMBN protein and a 45 bp shorter splice variant was identified in human subcutaneous adipose tissue. The expression of AMBN was found to increase four-fold during differentiation of 3T3-L1 cells. Administration of recombinant AMBN reduced the proliferation, and enhanced the expression of PPARγ and leptin in 3T3-L1 and human pre-adipocytes, respectively. Conclusions: The AMBN C-terminus variant was identified in adipocytes. This variant may be encoded from a short splice variant. Increased expression of AMBN during adipogenesis and its effect on adipogenic factors suggests that AMBN also has a role in adipocyte development

    Vitamin K2 modulates vitamin D induced mechanical properties of human 3D bone spheroids in vitro

    No full text
    Rotational culture promotes primary human osteoblasts (hOBs) to form three‐dimensional (3D) multicellular spheroids with bone tissue‐like structure without any scaffolding material. Cell‐based bone models enable us to investigate the effect of different agents on the mechanical strength of bone. Given that low dietary intake of both vitamin D and K is negatively associated with fracture risk, we aimed to assess the effect of these vitamins in this system. Osteospheres of hOBs were generated with menaquinone‐4 (MK‐4; 10μM) and 25‐hydroxyvitamin D3 [25(OH)D3; 0.01μM], alone and in combination, or without vitamins. The mechanical properties were tested by nanoindentation using a flat‐punch compression method, and the mineralized extracellular bone matrix was characterized by microscopy. The in vitro response of hOBs to MK‐4 and 25(OH)D3 was further evaluated in two‐dimensional (2D) cultures and in the 3D bone constructs applying gene expression analysis and multiplex immunoassays. Mechanical testing revealed that 25(OH)D3 induced a stiffer and MK‐4 a softer or more flexible osteosphere compared with control. Combined vitamin conditions induced the same flexibility as MK‐4 alone. Enhanced levels of periostin (p < 0.001) and altered distribution of collagen type I (COL‐1) were found in osteospheres supplemented with MK‐4. In contrast, 25(OH)D3 reduced COL‐1, both at the mRNA and protein levels, increased alkaline phosphatase, and stimulated mineral deposition in the osteospheres. With the two vitamins in combination, enhanced gene expression of periostin and COL‐1 was seen, as well as extended osteoid formation into the central region and increased mineral deposition all over the area. Moreover, we observed enhanced levels of osteocalcin in 2D and osteopontin in 3D cultures exposed to 25(OH)D3 alone and combined with MK‐4. In conclusion, the two vitamins seem to affect bone mechanical properties differently: vitamin D enhancing stiffness and K2 conveying flexibility to bone. These effects may translate to increased fracture resistance in vivo. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    Vitamin K2 modulates vitamin D induced mechanical properties of human 3D bone spheroids in vitro

    No full text
    Rotational culture promotes primary human osteoblasts (hOBs) to form three-dimensional (3D) multicellular spheroids with bone tissue-like structure without any scaffolding material. Cell-based bone models enable us to investigate the effect of different agents on the mechanical strength of bone. Given that low dietary intake of both vitamin D and K is negatively associated with fracture risk, we aimed to assess the effect of these vitamins in this system. Osteospheres of hOBs were generated with menaquinone-4 (MK-4; 10μM) and 25-hydroxyvitamin D3 [25(OH)D3; 0.01μM], alone and in combination, or without vitamins. The mechanical properties were tested by nanoindentation using a flat-punch compression method, and the mineralized extracellular bone matrix was characterized by microscopy. The in vitro response of hOBs to MK-4 and 25(OH)D3 was further evaluated in two-dimensional (2D) cultures and in the 3D bone constructs applying gene expression analysis and multiplex immunoassays. Mechanical testing revealed that 25(OH)D3 induced a stiffer and MK-4 a softer or more flexible osteosphere compared with control. Combined vitamin conditions induced the same flexibility as MK-4 alone. Enhanced levels of periostin (p < 0.001) and altered distribution of collagen type I (COL-1) were found in osteospheres supplemented with MK-4. In contrast, 25(OH)D3 reduced COL-1, both at the mRNA and protein levels, increased alkaline phosphatase, and stimulated mineral deposition in the osteospheres. With the two vitamins in combination, enhanced gene expression of periostin and COL-1 was seen, as well as extended osteoid formation into the central region and increased mineral deposition all over the area. Moreover, we observed enhanced levels of osteocalcin in 2D and osteopontin in 3D cultures exposed to 25(OH)D3 alone and combined with MK-4. In conclusion, the two vitamins seem to affect bone mechanical properties differently: vitamin D enhancing stiffness and K2 conveying flexibility to bone. These effects may translate to increased fracture resistance in vivo. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    Protein Concentrations in Stored Pooled Platelet Concentrates Treated with Pathogen Inactivation by Amotosalen Plus Ultraviolet a Illumination

    No full text
    Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Platelet granules contain a diverse group of proteins. Upon activation and during storage, platelets release a number of proteins into the circulation or supernatant of stored platelet concentrate (PC). The aim of this work was to investigate the effect of pathogen inactivation (PI) on a selection of proteins released in stored platelets. Materials and Methods: PCs in platelet additive solution (PAS) were produced from whole blood donations using the buffy coat (BC) method. PCs in the treatment arm were pathogen inactivated with amotosalen and UVA, while PCs in the second arm were used as an untreated platelet control. Concentrations of 36 proteins were monitored in the PCs during storage. Results: The majority of proteins increased in concentration over the storage period. In addition, 10 of the 29 proteins that showed change had significantly different concentrations between the PI treatment and the control at one or more timepoints. A subset of six proteins displayed a PI-related drop in concentration. Conclusions: PI has limited effect on protein concentration stored PC supernatant. The protein’s changes related to PI treatment with elevated concentration implicate accelerated Platelet storage lesion (PSL); in contrast, there are potential novel benefits to PI related decrease in protein concentration that need further investigation.Peer reviewe
    corecore