44 research outputs found

    Experimental investigation on energy absorption of auxetic structures

    Get PDF
    The human being has always been looking for optimal use of his surrounding materials and over the years, has managed to invent various structures with special properties. Lattice structures are widely used in various applications due to their lower weight and desirable compressive strength. An example of these structures is the honeycomb that is very popular and many studies have been done about it. A new type of lattice structures is auxetic structure that has negative Poisson’s ratio due to its geometry. This characteristic has caused auxetic structures to have unique properties such as high shear strength, indentation resistance and energy absorption. Investigation of energy absorption of auxetic structures is a subject that has not been studied in researches. In this study, the ability of some auxetic structure for absorbing energy is investigated at quasi-static and low velocity impact transverse loading. Specimens with three types of geometries (re-entrant, arrowhead and anti-tetra chiral) are fabricated using additive manufacturing method (3D printing). Discussion about energy absorption and failure mechanisms of all three structures were carried out and compared in both types of loading

    Enhancement of the electrical conductivity and interlaminar shear strength of CNT/GFRP hierarchical composite using an electrophoretic deposition technique

    Get PDF
    In this work, an electrophoretic deposition (EPD) technique has been used for deposition of carbon nanotubes (CNTs) on the surface of glass fiber textures (GTs) to increase the volume conductivity and the interlaminar shear strength (ILSS) of CNT/glass fiber-reinforced polymers (GFRPs) composites. Comprehensive experimental studies have been conducted to establish the influence of electric field strength, CNT concentration in EPD suspension, surface quality of GTs, and process duration on the quality of deposited CNT layers. CNT deposition increased remarkably when the surface of glass fibers was treated with coupling agents. Deposition of CNTs was optimized by measuring CNT’s deposition mass and process current density diagrams. The effect of optimum field strength on CNT deposition mass is around 8.5 times, and the effect of optimum suspension concentration on deposition rate is around 5.5 times. In the optimum experimental setting, the current density values of EPD were bounded between 0.5 and 1 mA/cm2. Based on the cumulative deposition diagram, it was found that the first three minutes of EPD is the effective deposition time. Applying optimized EPD in composite fabrication of treated GTs caused a drastic improvement on the order of 108 times in the volume conductivity of the nanocomposite laminate in comparison with simple GTs specimens. Optimized CNT deposition also enhanced the ILSS of hierarchical nanocomposites by 42%

    Effect of Al₂O₃ nanoparticles on the mechanical behaviour of aluminium-based metal matrix composite synthesized via powder metallurgy

    Get PDF
    The effects of variation in aluminium oxide nanoparticles in aluminium-based metal matrix composite on the compressive and sliding wear deformation have been investigated. The compressive and sliding wear resistance of the composite increase significantly with the addition of nanoparticles in the matrix. The 5% aluminium oxide nanoparticles in the composite were found to be the optimal weight fraction of added nanoparticles that produced higher static yield strength, hardness, scratch resistance and lower material loss in wear in the composite. The addition of nanoparticles, beyond 5% weight fraction, in the matrix showed adverse effects in the performance of the composite due to its higher brittleness. The effects on wear properties of the composite with added nanoparticles beyond optimal weight fraction were more detrimental than those with lower weight fraction of nanoparticles

    The experimental and numerical analysis of the ballistic performance of elastomer matrix Kevlar composites

    Get PDF
    In this paper, the behavior of high-velocity impact of Kevlar fabric and elastomer composites was investigated both experimentally and numerically. The experimental tests were performed by a gas gun device and hemispherical projectiles at different velocities, ranging from 122 m/s to 152 m/s for 2- and 4-layer samples. The penetration resistance of these composites during impact was determined using ABAQUS/Explicit. The present study's novelty lies in choosing the finite element model for Kevlar fabric and elastomer matrix in composites with nonlinear behavior to estimate the damage mechanism in the impact zone. For this purpose, the material model of the formable was used to define the damage criteria for Kevlar, and the material model of the VUMAT was used to consider the non-linear behavior and damage evolution of elastomer matrix with one of the damage criteria. Then, the dynamic behavior of the laminate was studied by a Split Hopkinson Pressure Bar. The effect of the number of layers, the shape of the projectile, the energy absorption and failure mechanisms were studied. The verification of this numerical model with experimental observations showed good agreement. The results reveal that elastomeric composites can cause to increase energy absorption and reduce the damaged area

    Glass fiber/polypropylene composites with potential of bone fracture fixation plates : manufacturing process and mechanical characterization

    Get PDF
    Mechanical properties and manufacturing processes of Glass Fiber/Polypropylene (GF/PP) composites for application of flexible internal long bone fracture fixation plates have been investigated. PP/Short Chopped Glass Fiber (PPSCGF), PP/Long Glass Fiber (PPLGF) and PP/Long Glass Fiber Yarn (PPLGFY) were used in fabrication of the fixation plates. The PPSCGF and PPLGF plates were made by the heat-compressing process and Three-dimensional (3D) printing method was used to make the PPLGFY ones. The values of Young’s modulus, tensile strength, flexural modulus and strength, and impact strength of the PPSCGF in the fiber longitudinal direction were found to be [Formula: see text]GPa, [Formula: see text]MPa, [Formula: see text]GPa, [Formula: see text]MPa and [Formula: see text]kJ/m2, respectively. Where, these values for the PPLGF were to [Formula: see text]GPa, [Formula: see text]MPa, [Formula: see text]GPa, [Formula: see text]MPa, and [Formula: see text]kJ/m2 and for the PPLGFY were to [Formula: see text]GPa, [Formula: see text]MPa, [Formula: see text]GPa, [Formula: see text]MPa and [Formula: see text]kJ/m2. These have been found to be in close agreement with the human bone properties. Furthermore, the strength and modulus values of the plates were reasonable to be used as a bone implant applicable for bone fracture reconstructions. Hence, the study concluded that the GF/PP composites are useful for load-bearing during daily activities and would be recommended as a choice in orthopedic fixation plate applications. It will help the researchers for development of new fixation designs and the clinicians for better patient’s therapy in future

    Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content

    Get PDF
    This paper reports improvement in the fracture properties of epoxy nanocomposites using plasma functionalized graphene nanoplatelets (f-GNP) at low filler content. Various mechanical tests were performed on a series of f-GNP/epoxy at low nanofiller loading to assess the effect of the nanofiller on mechanical properties. Most importantly, a significant enhancement in fracture toughness is achieved without compromising the tensile and thermal properties of the nanocomposites. The fracture toughness of neat epoxy resin was increased by over 50% with the incorporation of 0.25 wt% f-GNP loading, obtaining a value of 245 J m−2, while the neat epoxy indicated a value of 162 J m−2. The glass transition temperature (Tg) and coefficient of thermal expansion (CTE) both showed a slight increase of 3% and 2%, respectively, both at 1 wt% f-GNP loading. These enhancements are competitive with current literature results on nanocomposites, but at significantly lower filler content. We therefore demonstrate that f-GNPs are capable of providing effective toughening of epoxy resins, while maintaining other tensile and thermal properties
    corecore