762 research outputs found
Stochastic differential equations driven by fractional Brownian motion and Poisson point process
In this paper, we study a class of stochastic differential equations with
additive noise that contains a fractional Brownian motion (fBM) and a Poisson
point process of class (QL). The differential equation of this kind is
motivated by the reserve processes in a general insurance model, in which the
long term dependence between the claim payment and the past history of
liability becomes the main focus. We establish some new fractional calculus on
the fractional Wiener-Poisson space, from which we define the weak solution of
the SDE and prove its existence and uniqueness. Using an extended form of
Krylov-type estimate for the combined noise of fBM and compound Poisson, we
prove the existence of the strong solution, along the lines of Gy\"{o}ngy and
Pardoux (Probab. Theory Related Fields 94 (1993) 413-425). Our result in
particular extends the one by Mishura and Nualart (Statist. Probab. Lett. 70
(2004) 253-261).Comment: Published at http://dx.doi.org/10.3150/13-BEJ568 in the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Recommended from our members
scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles.
Simultaneous measurements of transcriptomic and epigenomic profiles in the same individual cells provide an unprecedented opportunity to understand cell fates. However, effective approaches for the integrative analysis of such data are lacking. Here, we present a single-cell aggregation and integration (scAI) method to deconvolute cellular heterogeneity from parallel transcriptomic and epigenomic profiles. Through iterative learning, scAI aggregates sparse epigenomic signals in similar cells learned in an unsupervised manner, allowing coherent fusion with transcriptomic measurements. Simulation studies and applications to three real datasets demonstrate its capability of dissecting cellular heterogeneity within both transcriptomic and epigenomic layers and understanding transcriptional regulatory mechanisms
La progression thématique des textes produits par des apprenants sinophones du français langue étrangère
En nous appuyant sur la « perspective fonctionnelle de la phrase » du cercle de Prague, nous avons schématisé la progression thématique des textes produits par les apprenants d’origine sinophone durant leur apprentissage du français langue étrangère (désormais FLE). L’analyse que nous avons menée a révélé des traits caractérisant les écrits des apprenants issus de la culture rhétorique chinoise. Ces traits concernent respectivement la distance importante entre la reprise thématique et le référent initial, la rupture thématique plus récurrente et successive et la direction de la progression peu variée. Par ailleurs, cette contribution propose à la fin des paramètres d’ajustement servant à réguler la dynamique textuelle dans l’enseignement de l’écrit en FLE
Recommended from our members
Smoothening creases on surfaces of strain-stiffening materials
When an elastic block (e.g., an elastomer or a soft tissue) is compressed to a critical strain, the smooth surface of the block forms creases, namely, localized regions of self-contact. Here we show how this instability behaves if the solid stiffens steeply. For a solid that stiffens steeply at large strains, as the compression increases, the surface is initially smooth, then forms creases, and finally becomes smooth again. For a solid that stiffens steeply at small strains, creases will never form and the surface remains smooth for all levels of compression. We also obtain the critical conditions for the formation and disappearance of wrinkles. When the surface does become unstable, we find that creases always set in at a lower compression than wrinkles. Our findings may shed light in developing crease-resistant materials.Engineering and Applied Science
- …