19 research outputs found

    Insights into Leading Edge Vortex Formation and Detachment on a Pitching and Plunging Flat Plate

    Get PDF
    The present study is a prelude to applying different flow control devices on pitching and plunging airfoils with the intention of controlling the growth of the leading edge vortex (LEV); hence, the lift under unsteady stall conditions. As a pre-requisite, the parameters influencing the development of the LEV topology must be fully understood, and this constitutes the main motivation of the present experimental investigation. The aims of this study are twofold. First, an approach is introduced to validate the comparability between flow fields and LEV characteristics of two different facilities using water and air as working media by making use of a common baseline case. The motivation behind this comparison is that with two facilities the overall parameter range can be greatly expanded. This comparison includes an overview of the respective parameter ranges, control of the airfoil kinematics and careful scrutiny of how post-processing procedures of velocity data from time-resolved particle image velocimetry (PIV) influence the integral properties and topological features used to characterise the LEV development. Second, and based on results coming from both facilities, the appearance of secondary structures and their effect on LEV detachment over an extended parameter range is studied. A Lagrangian flow field analysis, based on finite-time Lyapunov Exponent (FTLE) ridges, allows precise identification of secondary structures and reveals that their emergence is closely correlated to a vortex Reynolds number threshold computed from the LEV circulation. This threshold is used to model the temporal onset of secondary structures. Further analysis indicates that the emergence of secondary structures causes the LEV to stop accumulating circulation if the shear layer angle at the leading edge of the flat plate has ceased to increase

    Insights into leading edge vortex formation and detachment on a pitching and plunging flat plate

    Get PDF
    The present study is a prelude to applying different flow control devices on pitching and plunging airfoils with the intention of controlling the growth of the leading edge vortex (LEV); hence, the lift under unsteady stall conditions. As a pre-requisite the parameters influencing the development of the LEV topology must be fully understood and this constitutes the main motivation of the present experimental investigation. The aims of this study are twofold. First, an approach is introduced to validate the comparability between flow fields and LEV characteristics of two different facilities using water and air as working media by making use of a common baseline case. The motivation behind this comparison is that with two facilities the overall parameter range can be significantly expanded. This comparison includes an overview of the respective parameter ranges, control of the airfoil kinematics and careful scrutiny of how post-processing procedures of velocity data from time-resolved particle image velocimetry (PIV) influence the integral properties and topological features used to characterise the LEV development. Second, and based on results coming from both facilities, the appearance of secondary structures and their effect on LEV detachment over an extended parameter range is studied. A Lagrangian flow field analysis based on finite-time Lyapunov Exponent (FTLE) ridges allows precise identification of secondary structures and reveals that their emergence is closely correlated to a vortex Reynolds number threshold computed from the LEV circulation. This threshold is used to model the temporal onset of secondary structures. Further analysis indicates that the emergence of secondary structures causes the LEV to stop accumulating circulation if the shear layer angle at the leading edge of the flat plate has ceased to increase. This information is of particular importance for advanced flow control applications, since efforts to strengthen and/or prolong LEV growth rely on precise knowledge about where and when to apply flow control measures

    Multimodal critical-scenarios search method for test of autonomous vehicles

    Get PDF
    Purpose – The purpose of this paper is to search for the critical-scenarios of autonomous vehicles (AVs) quickly and comprehensively, which is essential for verification and validation (V&V). Design/methodology/approach – The author adopted the index F1 to quantitative critical-scenarios' coverage of the search space and proposed the improved particle swarm optimization (IPSO) to enhance exploration ability for higher coverage. Compared with the particle swarm optimization (PSO), there were three improvements. In the initial phase, the Latin hypercube sampling method was introduced for a uniform distribution of particles. In the iteration phase, the neighborhood operator was adapted to explore more modals with the particles divided into groups. In the convergence phase, the convergence judgment and restart strategy were used to explore the search space by avoiding local convergence. Compared with the Monte Carlo method (MC) and PSO, experiments on the artificial function and critical-scenarios search were carried out to verify the efficiency and the application effect of the method. Findings – Results show that IPSO can search for multimodal critical-scenarios comprehensively, with a stricter threshold and fewer samples in the experiment on critical-scenario search, the coverage of IPSO is 14% higher than PSO and 40% higher than MC. Originality/value – The critical-scenarios' coverage of the search space is firstly quantified by the index F1, and the proposed method has higher search efficiency and coverage for the critical-scenarios search of AVs, which shows application potential for V&V

    Bypass transition in a boundary layer flow induced by plasma actuators

    Get PDF
    Bypass transition in ow over a at plate triggered by a pair of Dielectric-barrier-discharge (DBD) plasma actuators mounted on the plate surface and aligned in the streamwise direction is investigated. A 4-species plasma-uid model is used to model the electrohydrodynamic (EHD) force generated by the plasma actuation. A pair of counter-rotating streamwise vortices is created downstream of the actuators, leading to the formation of a high-speed streak in the centre and two low-speed streaks on each side. As the length of actuators increases, more momentum is added to the boundary layer and eventually a turbulent wedge is generated at an almost fixed location. With large spanwise distance between the actuators (wide layout), direct numerical simulations (DNS) indicate that the low-speed streaks on both sides lose secondary stability via an inclined varicose-like mode simultaneously, leaving a symmetric perturbation pattern with respect to the centre of the actuators. Further downstream, the perturbations are tilted by the mean shear of the high- and low-speed streaks and consequently a `W' shape pattern is observed. When the pair of plasma actuators is placed closer (narrow layout) in the spanwise direction, the mean shear in the centre becomes stronger and secondary instability first occurs on the high-speed streak with an asymmetric pattern. Inclined varicose-like and sinuous-like instabilities coexist in the following breakdown of the negative streaks on the side and the perturbations remain asymmetric with respect to the centre. Here the tilting of disturbances is dominated by the mean shear in the centre and the perturbations display a `V' shape. Linear analysis techniques including biglobal stability and transient growth are performed to further examine the uid physics and the aforementioned phenomena at narrow and wide layouts, such as the secondary instabilities, `V' and `W' shapes, the symmetric and asymmetric breakdown, are all observed

    Study on seismic response of a new staggered story isolated structure considering SSI effect

    No full text
    The new staggered story isolated structure is a new type of seismic isolated structure developed from base isolated structure and inter-story isolated structure. In order to explore the seismic response of the new staggered story isolated structure considering the soil-structure interaction (SSI), the model of a new staggered story isolated structure considering SSI effect is established to analyze the nonlinear dynamic time-history response under rare earthquakes, and the comparison between hard soil and soft soil was carried out. Results show that the stiffness of the new staggered story isolated structure reduced, the modal period extended and the seismic response reduced by considering the SSI effect, the softer the site soil, the more obvious those changes are. Meanwhile, the shear force and the damage of the core tube decreases, while the shear force and the damage of the frame increases, the shear force transfers from the core tube to the frame. Additionally, the energy absorption of the seismic isolated bearings at the frame reduced, the energy absorption of the seismic isolated bearings at the core tube increased, the softer the site soil, the more obvious the trend is

    Ensemble averaged velocity field of the flow around pitching and plunging airfoils

    No full text
    Correlated and ensemble averaged velocity fields of the flow around pitching and plunging flat plate airfoils from 2 facilities. Raw data were recorded in a water tunnel at BUAA and a wind tunnel at TU Darmstadt. Parameters of the flow, correlation algorithm and airfoil motion can be found in Kissing et al. 2020 (under revision). For additional data and information please contact [email protected]. Both datasets are used to compare the baseline case in the first part of the manuscript

    Research on Simulation of the Hybrid Electric Vehicle Based on Software ADVISOR

    No full text
    Three configurations (series, parallel, and series-parallel) of the hybrid electric vehicle (HEV) are studied, this study investigates the advantages and disadvantages of three HEV in the paper. Power flow simulations are conducted with the MATLAB/Simulink-based software Advanced Vehicle Simulator (ADVISOR). These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration for the City Hybrid bus design. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge (SOC) that provide a good estimate of how the City Hybrid bus will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the HEV occurs during deceleration. Results show that the series-parallel HEV configuration is optimal, and provides the references in both parameter optimization and performance debugging for the development of City Hybrid bus

    Process Optimization and Performance Evaluation of TSV Arrays for High Voltage Application

    No full text
    In order to obtain high-quality through-silicon via (TSV) arrays for high voltage applications, we optimized the fabrication processes of the Si holes, evaluated the dielectric layers, carried out hole filling by Cu plating, and detected the final structure and electric properties of the TSVs. The Si through-hole array was fabricated in an 8-inch Si substrate as follows: First, a blind Si hole array was formed by the Si deep reactive etching (DRIE) technique using the Bosch process, but with the largest width of the top scallops reduced to 540 nm and the largest notch elimidiameternated by backside grinding, which also opens the bottom ends of the Si blind holes and forms 500-μm-deep Si through holes. Then, the sidewalls of the Si holes were further smoothed by a combination of thermal oxidation and wet etching of the thermal oxide. The insulating capability of the dielectric layers was evaluated prior to metal filling by using a test kit. The metal filling of the through holes was carried out by bottom-up Cu electroplating and followed by annealing at 300 °C for 1 h to release the electroplating stress and to prevent possible large metal thermal expansion in subsequent high-temperature processes. The TSV arrays with different hole diameters and spacing were detected: no visible defects or structure peeling was found by scanning electron microscopy (SEM) observations, and no detectable interdiffusion between Cu and the dielectric layers was detected by energy dispersive X-ray (EDX) analyses. Electric tests indicated that the leakage currents between two adjacent TSVs were as low as 6.80 × 10−10 A when a DC voltage was ramped up from 0 to 350 V, and 2.86 × 10−9 A after a DC voltage was kept at 100 V for 200 s
    corecore