15,253 research outputs found

    Primary Channel Gain Estimation for Spectrum Sharing in Cognitive Radio Networks

    Full text link
    In cognitive radio networks, the channel gain between primary transceivers, namely, primary channel gain, is crucial for a cognitive transmitter (CT) to control the transmit power and achieve spectrum sharing. Conventionally, the primary channel gain is estimated in the primary system and thus unavailable at the CT. To deal with this issue, two estimators are proposed by enabling the CT to sense primary signals. In particular, by adopting the maximum likelihood (ML) criterion to analyze the received primary signals, a ML estimator is first developed. After demonstrating the high computational complexity of the ML estimator, a median based (MB) estimator with proved low complexity is then proposed. Furthermore, the estimation accuracy of the MB estimation is theoretically characterized. By comparing the ML estimator and the MB estimator from the aspects of the computational complexity as well as the estimation accuracy, both advantages and disadvantages of two estimators are revealed. Numerical results show that the estimation errors of the ML estimator and the MB estimator can be as small as 0.60.6 dB and 0.70.7 dB, respectively.Comment: Submitted to IEEE Transactions on Communication

    Phase resetting reveals network dynamics underlying a bacterial cell cycle

    Get PDF
    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS)

    H

    Get PDF
    This paper discusses H∞ control problems of continuous-time and discrete-time singular Markovian jump systems (SMJSs) with bounded transition probabilities. Improved sufficient conditions for continuous-time SMJSs to be regular, impulse free, and stochastically stable with γ-disturbance attenuation are established via less conservative inequality to estimate the transition jump rates, so are the discrete-time SMJSs. With the obtained conditions, the design of a state feedback controller which ensures the resulting closed-loop system to be stochastically admissible and with H∞ performance is given in terms of linear matrix inequalities (LMIs). Finally, illustrative examples are presented to show the effectiveness and the benefits of the proposed approaches
    • …
    corecore