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This paper discusses 𝐻
∞

control problems of continuous-time and discrete-time singular Markovian jump systems (SMJSs)
with bounded transition probabilities. Improved sufficient conditions for continuous-time SMJSs to be regular, impulse free, and
stochastically stable with 𝛾-disturbance attenuation are established via less conservative inequality to estimate the transition jump
rates, so are the discrete-time SMJSs. With the obtained conditions, the design of a state feedback controller which ensures the
resulting closed-loop system to be stochastically admissible andwith𝐻

∞
performance is given in terms of linearmatrix inequalities

(LMIs). Finally, illustrative examples are presented to show the effectiveness and the benefits of the proposed approaches.

1. Introduction

Singular systems, also referred to as generalized systems,
descriptor systems, implicit systems, differential-algebraic
systems, or semistate systems [1], have been extensively
studied in the past years due to the fact that singular systems
better describe physical systems than regular ones. Many
practical problems, such as those in Leontief ’s dynamic
system [2] and electrical and mechanical systems [3, 4], are
modeled as singular systems. Considerable attention has been
paid to investigate such continuous-time singular systems
[5–8] and discrete-time singular systems [9–11], respectively.
On the other hand, Markovian jump systems (MJSs) can
be regarded as a special class of hybrid systems with finite
operation modes whose structures are subject to random
abrupt changes.The studies ofMJSs are important in practical
applications such as manufacturing systems, aircraft control,
target tracking, robotics, solar receiver control, and power
systems.Therefore, a great deal of attention has been devoted
to the study of this class of systems in recent years such as
[12–19].

When singular systems experience abrupt changes in
their structure and parameters, it is natural to model
them as SMJSs. Reference [20] considered the stochas-
tic stability and robust stochastic stability conditions for

continuous-time SMJSs. The delay-dependent 𝐻
∞

control
problem of continuous-time SMJSs was studied in [21] via
Jensen’s integral inequality approach after introducing free
weighting matrices, while [22] gave sufficient conditions for
uncertain discrete-time SMJSs with mode-dependent time
delays through transforming them into a standard linear
system. Particularly, [23] proposed more general condition
of 𝐻
∞

control for discrete-time SMJSs, which does not
require any decomposition of the original system, and the
construction of 𝐻

∞
controller gain does not need system

decomposition. However, all the above-mentioned criteria
on MJSs require the values of transition probabilities to be
exactly know. Recently, Boukas discussed 𝐻

∞
control of

discrete-time normal state-space MJSs with bounded tran-
sition probabilities in [24] and stabilization of continuous-
time SMJSs with full or partial knowledge of transition rates
in [25].

Following the work of [24, 25], in this paper, the 𝐻
∞

control problem is considered for both continuous-time and
discrete-time SMJSs with bounded transition probabilities.
Sufficient criteria guaranteeing SMJSs being stochastically
admissible with an 𝐻

∞
performance are presented in terms

of LMIs, which are obtained by using an improved inequality
to obtain less conservative estimation on transition proba-
bilities. Based on these, a state feedback controller such that
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the resulting closed-loop system is stochastically admissible
and possesses a prescribed𝐻

∞
performance is given. Numer-

ical examples are provided to demonstrate the validity of
developed methods.

Notation. R𝑛 denotes the 𝑛 dimensional Euclidean space.
R𝑚×𝑛 is the set of all 𝑚 × 𝑛 real matrices. | ⋅ | denotes the
Euclidean norm. 𝜀{⋅} is the expectation operator with respect
to some probability measure. In symmetric block matrices,
we use “∗” as an ellipsis for the terms induced by symmetry,
diag{⋅ ⋅ ⋅ } for a block-diagonal matrix, and (𝑀)

⋆

≜ 𝑀 + 𝑀
𝑇.

2. Preliminaries

2.1. Continuous-Time Markovian Jump Linear Systems. Con-
sider the following continuous-time SMJS described by

𝐸�̇� (𝑡) = 𝐴 (𝜂 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝜂 (𝑡)) 𝑢 (𝑡) + 𝐹 (𝜂 (𝑡)) 𝑤 (𝑡)

𝑦 (𝑡) = 𝐶 (𝜂 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝜂 (𝑡)) 𝑤 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the
control input, 𝑤(𝑡) ∈ R𝑝 is the disturbance input, and
𝑦(𝑡) ∈ R𝑞 is the control output. Matrix 𝐸 may be singular
assumed rank(𝐸) = 𝑟 ≤ 𝑛. Parameter 𝜂(𝑡) is the continuous-
time Markov processes with right continuous trajectories
taking values in a finite set S = {1, 2, . . . , 𝑁} with transition
probabilities:

Pr (𝜂 (𝑡 + Δ𝑡) = 𝑗 | 𝜂 (𝑡) = 𝑖) = {

𝜆
𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) 𝑖 ̸= 𝑗

1 + 𝜆
𝑖𝑖
Δ𝑡 + 𝑜 (Δ𝑡) 𝑖 = 𝑗,

(2)

where Δ𝑡 > 0, lim
Δ𝑡→0

(𝑜(Δ𝑡)/Δ𝑡) = 0, and the transition
probability rate satisfies 𝜆

𝑖𝑗
≥ 0, for 𝑖, 𝑗 ∈ S, 𝑖 ̸= 𝑗, and

𝜆
𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
. (3)

For notational simplicity, in the sequel, for each possible
𝜂(𝑡) = 𝑖, 𝑖 ∈ S, the matrix 𝐴

𝜂(𝑡)
will be denoted by 𝐴

𝑖
, and

so on.

Assumption 1. The transition probabilities for system (1) are
assumed to be unknownbut vary between two knownbounds
satisfying the following:

0 ≤ 𝜆
𝑖𝑗
≤ 𝜆
𝑖𝑗
≤ 𝜆
𝑖𝑗

∀𝑖, 𝑗 ∈ S, (4)

where 𝑖 ̸= 𝑗.

From Assumption 1, when we only know that 𝜆
𝑖

=

min
𝑗 ̸= 𝑖∈S𝜆𝑖𝑗 and 𝜆

𝑖
= min

𝑗 ̸= 𝑖∈S𝜆𝑖𝑗, we have 𝜆
𝑖
≤ 𝜆
𝑖𝑗

≤ 𝜆
𝑖
,

which is the same as in [25]. Thus, we may say that Assump-
tion 1 is more natural.

Definition 2 (see [26]). (1) The nominal system (1) is said to
be regular if det(𝑠𝐸−𝐴

𝑖
) is not identically zero for every 𝑖 ∈ S.

(2) The nominal system (1) is said to be impulse free if
deg(det(𝑠𝐸 − 𝐴

𝑖
)) = rank(𝐸) for every 𝑖 ∈ S.

(3) The nominal system in (1) is said to be stochastically
stable if, when 𝑢(𝑡) = 0 and 𝑤(𝑡) = 0, there exists a constant
𝑀(𝑥
0
, 𝜂
0
) such that

E{∫

∞

0

‖𝑥 (𝑡)‖
2

𝑑𝑡 | 𝑥
0
, 𝜂
0
} ≤ 𝑀(𝑥

0
, 𝜂
0
) . (5)

(4) The nominal system in (1) is said to be stochastically
admissible if it is regular, impulse free, and stochastically
stable.

Definition 3. Given 𝛾 > 0, the nominal system in (1) is said
to be stochastically admissiblewith 𝛾-disturbance attenuation
if it is stochastically admissible and satisfying the following
such that

E{∫

∞

0





𝑦 (𝑡)






2

𝑑𝑡} < 𝛾
2

E{∫

∞

0

‖𝑤 (𝑡)‖
2

𝑑𝑡} (6)

holds for zero-initial condition and any nonzero 𝑤(𝑡) ∈

L
2
[0,∞).

In this paper, the 𝐻
∞

controller such that the resulting
closed-loop system is stochastically admissible with (6) is

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , (7)

where𝐾
𝑖
is to be determined.

Lemma 4. Given a scalar 𝛾 > 0, the unforced system (1) is
stochastically admissible with 𝐻

∞
performance if there exist

matrices 𝑃
𝑖
such that

𝐸
𝑇

𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸 ≥ 0,

[

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑇

𝑖
𝐴
𝑖
+

𝑁

∑

𝑗=1

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗

𝑃
𝑇

𝑖
𝐹
𝑖

𝐶
𝑇

𝑖

∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖

∗ ∗ −𝐼

]

]

]

]

]

< 0.

(8)

2.2. Discrete-TimeMarkovian Jump Linear Systems. Consider
the following discrete-time SMJS described by

𝐸𝑥 (𝑘 + 1) = 𝐴 (𝜃 (𝑘)) 𝑥 (𝑡) + 𝐵 (𝜃 (𝑘)) 𝑢 (𝑘) + 𝐹 (𝜃 (𝑘)) 𝑤 (𝑘)

𝑦 (𝑘) = 𝐶 (𝜃 (𝑘)) 𝑥 (𝑘) + 𝐷 (𝜃 (𝑘)) 𝑤 (𝑘) ,

(9)

where 𝑥(𝑘) ∈ R𝑛 is the state vector, 𝑢(𝑘) ∈ R𝑚 is the control
input, 𝑤(𝑘) ∈ R𝑝 is the disturbance input, and 𝑦(𝑘) ∈ R𝑞

is the control output. Matrix 𝐸 may be singular assumed
rank(𝐸) = 𝑟 ≤ 𝑛. Parameter 𝜃(𝑘) is a discrete-time, discrete-
state Markovian chain taking values in a finite set S with
transition probabilities:

Pr (𝜃 (𝑘 + 1) = 𝑗 | 𝜃 (𝑘) = 𝑖) = 𝜋
𝑖𝑗
, (10)

where 𝜋
𝑖𝑗
≥ 0, for 𝑖, 𝑗 ∈ S, and

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
= 1. (11)
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Assumption 5. The transition probabilities for (10) are
assumed to be unknownbut vary between two knownbounds
satisfying the following:

0 ≤ 𝜋
𝑖𝑗
≤ 𝜋
𝑖𝑗
≤ 𝜋
𝑖𝑗

∀𝑖, 𝑗 ∈ S. (12)

From [24], we know that ∑𝑁
𝑗=1

𝜋
𝑖𝑗
and ∑

𝑁

𝑗=1
𝜋
𝑖𝑗
may not

equal 1. It is not necessary to exactly know the transition
probabilities but only the bounds of 𝜋

𝑖𝑗
, which are 𝜋

𝑖𝑗
and 𝜋

𝑖𝑗
.

Definition 6 (see [26]). (1) The nominal system in (9) is said
to be regular if det(𝑠𝐸 − 𝐴

𝑖
) is not identically zero for every

𝑖 ∈ S.
(2) The nominal system in (9) is said to be causal if

deg(det(𝑠𝐸 − 𝐴
𝑖
)) = rank(𝐸) for every 𝑖 ∈ S.

(3) The nominal system in (9) is said to be stochastically
stable if, when 𝑢(𝑘) = 0 and 𝑤(𝑘) = 0, there exists a constant
𝑀(𝑥
0
, 𝜃
0
) such that

E{

𝑁

∑

𝑘=0

‖𝑥 (𝑘)‖
2

| 𝑥
0
, 𝜃
0
} ≤ 𝑀(𝑥

0
, 𝜃
0
) . (13)

(4) The nominal system in (9) is said to be stochastically
admissible if it is regular, causal, and stochastically stable.

Definition 7. Given 𝛾 > 0, the nominal system in (9) is said
to be stochastically admissiblewith 𝛾-disturbance attenuation
such that

E{

𝑁

∑

𝑘=0





𝑦 (𝑘)






2

} < 𝛾
2

E{

𝑁

∑

𝑘=0

‖𝑤 (𝑘)‖
2

} (14)

holds for zero-initial condition and any nonzero 𝑤(𝑘) ∈

L
2
[0,∞).

The corresponding𝐻
∞

controller for system (9) is
𝑢 (𝑘) = 𝐾

𝑖
𝑥 (𝑘) , (15)

where𝐾
𝑖
is to be determined.

Lemma 8. Given a scalar 𝛾 > 0, the unforced system (9) is
stochastically admissible with 𝐻

∞
performance if there exist

matrices 𝑃
𝑖
= 𝑃
𝑇

𝑖
such that

𝐸
𝑇

𝑃
𝑖
𝐸 ≥ 0 (16)

[

[

𝐴
𝑇

𝑖
�̂�
𝑖
𝐴
𝑖
− 𝐸
𝑇

𝑃
𝑖
𝐸 𝐴

𝑇

𝑖
�̂�
𝑖
𝐹
𝑖

𝐶
𝑇

𝑖

∗ −𝛾
2

𝐼 + 𝐹
𝑇

𝑖
�̂�
𝑖
𝐹
𝑖
𝐷
𝑇

𝑖

∗ ∗ −𝐼

]

]

< 0, (17)

where �̂�
𝑖
= ∑
𝑁

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
.

Lemma 9 (see[27]). Given any real matrices𝑋,𝑌, and𝑍with
appropriate dimensions and such that 𝑌 > 0 and is symmetric,
then, one has

𝑋
𝑇

𝑌𝑋 + 𝑋
𝑇

𝑍 + 𝑍
𝑇

𝑋 + 𝑍
𝑇

𝑌
−1

𝑍 ≥ 0. (18)

3. Main Results

3.1. Continuous-Time Markovian Jump Linear Systems

Theorem 10. Given a scalar 𝛾 > 0, the unforced system
(1) with constraint (4) is stochastically admissible with 𝐻

∞

performance if there exist matrices 𝑋
𝑖
and 𝑇

𝑖𝑗
> 0 such that

𝑋
𝑇

𝑖
𝐸
𝑇

= 𝐸𝑋
𝑖
≥ 0

[

[

[

[

[

[

[

[

(𝐴
𝑖
𝑋
𝑖
)
⋆

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑋
𝑇

𝑖
𝐸
𝑇

𝐹
𝑖

𝑋
𝑇

𝑖
𝐶
𝑇

𝑖
𝑆

𝑇

𝑖
(𝑋) 𝑆

𝑇

𝑖
(𝑋)

∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖
0 0

∗ ∗ −𝐼 0 0

∗ ∗ ∗ 𝑅
𝑖

0

∗ ∗ ∗ ∗ �̃�
𝑖

]

]

]

]

]

]

]

]

< 0,

(19)

where

𝑆

𝑇

𝑖
(𝑋) = [√𝜆

𝑖1
𝑋
𝑇

𝑖
⋅ ⋅ ⋅ √𝜆

𝑖(𝑖−1)
𝑋
𝑇

𝑖
√𝜆
𝑖(𝑖+1)

𝑋
𝑇

𝑖
⋅ ⋅ ⋅ √𝜆

𝑖𝑁
𝑋
𝑇

𝑖

]

𝑆
𝑇

𝑖
(𝑋) = [ √𝜆

𝑖1
𝑋
𝑇

𝑖
𝐸
𝑇

⋅ ⋅ ⋅ √𝜆
𝑖(𝑖−1)

𝑋
𝑇

𝑖
𝐸
𝑇

√𝜆
𝑖(𝑖+1)

𝑋
𝑇

𝑖
𝐸
𝑇

⋅ ⋅ ⋅ √𝜆
𝑖𝑁
𝑋
𝑇

𝑖
𝐸
𝑇
]

𝑅
𝑖
= − diag {4𝑇

𝑖1
, . . . , 4𝑇

𝑖(𝑖−1)
, 4𝑇
𝑖(𝑖+1)

, . . . , 4𝑇
𝑖𝑁
}

�̃�
𝑖
= − diag {(𝑋

1
)
⋆

− 𝑇
𝑖1
, . . . , (𝑋

𝑖−1
)
⋆

− 𝑇
𝑖(𝑖−1)

, (𝑋
𝑖+1

)
⋆

− 𝑇
𝑖(𝑖+1)

, . . . , (𝑋
𝑁
)
⋆

− 𝑇
𝑖𝑁
}

(20)

hold for all 𝑖 ∈ 𝑆.

Proof. From (3) and (4), we have
𝑁

∑

𝑗=1

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
=

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑖

≤

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑖
.

(21)

Then, by (8) and (21), we conclude that
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[

[

[

[

(𝐴
𝑇

𝑖
𝑃
𝑖
)

⋆

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑖

𝑃
𝑇

𝑖
𝐹
𝑖

𝐶
𝑇

𝑖

∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖

∗ ∗ −𝐼

]

]

]

]

< 0.

(22)

Since [(1/2)𝑇−(1/2)
𝑖𝑗

−𝐸
𝑇

𝑃
𝑗
𝑇
(1/2)

𝑖𝑗
][(1/2)𝑇

−(1/2)

𝑖𝑗
−𝐸
𝑇

𝑃
𝑗
𝑇
(1/2)

𝑖𝑗
]
𝑇

≥

0 and 𝑇
𝑖𝑗
> 0, ∀𝑖, 𝑗 ∈ S and 𝑖 ̸= 𝑗, we have

𝐸
𝑇

𝑃
𝑗
≤

1

4

𝑇
−1

𝑖𝑗
+ 𝐸
𝑇

𝑃
𝑗
𝑇
𝑖𝑗
𝑃
𝑇

𝑗
𝐸, (23)

−𝑃
−𝑇

𝑖
𝑇
−1

𝑖𝑗
𝑃
−1

𝑖
≤ 𝑇
𝑖𝑗
− 𝑃
−1

𝑖
− 𝑃
−𝑇

𝑖
. (24)

Via (22) and (23), we have (25) implying (22); that is,

[

[

Ω
𝑖

𝑃
𝑇

𝑖
𝐹
𝑖

𝐶
𝑇

𝑖

∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖

∗ ∗ −𝐼

]

]

< 0, (25)

where

Ω
𝑖
= (𝐴
𝑇

𝑖
𝑃
𝑖
)

⋆

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑖
+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

1

4

𝜆
𝑖𝑗
𝑇
−1

𝑖𝑗

+

𝑁

∑

𝑗=1, 𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝑇
𝑖𝑗
𝑃
𝑇

𝑗
𝐸.

(26)

Let 𝑋
𝑖

= 𝑃
−1

𝑖
; then pre- and postmultiply (25) by

diag{𝑋𝑇
𝑖
, 𝐼, 𝐼} and its transpose. Taking into account (24) and

via Schur complement, we obtain that (19) and (21) imply (8).
This completes the proof.

Remark 11. Since to the term 𝐸
𝑇

𝑃
𝑗
gives some problems, [25]

presented a method to deal with problem; that is, 𝐸𝑇𝑃
𝑗

≤

(1/4)𝜖
−1

𝑗
𝐼+ 𝜖
𝑗
𝐸
𝑇

𝑃
𝑗
𝑃
𝑇

𝑗
𝐸. In this paper, we overcome it by (23);

let 𝑇
−1

𝑖𝑗
= 𝜖
−1

𝑗
; we have 𝐸

𝑇

𝑃
𝑗

≤ (1/4)𝜖
−1

𝑗
𝐼 + 𝜖
𝑗
𝐸
𝑇

𝑃
𝑗
𝑃
𝑇

𝑗
𝐸.

Therefore, we have 𝐸
𝑇

𝑃
𝑗

≤ (1/4)𝑇
−1

𝑖𝑗
+ 𝐸
𝑇

𝑃
𝑗
𝑇
𝑖𝑗
𝑃
𝑇

𝑗
𝐸 ≤

(1/4)𝜖
−1

𝑗
𝐼 + 𝜖
𝑗
𝐸
𝑇

𝑃
𝑗
𝑃
𝑇

𝑗
𝐸.

Theorem 12. Given a scalar 𝛾 > 0, there exists a state feedback
controller in the form of (7) such that the resulting closed-
loop system is stochastically admissible with (6), if there exist
matrices 𝑋

𝑖
, 𝑇
𝑖𝑗
> 0, and 𝑌

𝑖
such that

𝑋
𝑇

𝑖
𝐸
𝑇

= 𝐸𝑋
𝑖
≥ 0, (27)

[

[

[

[

[

[

[

Ω
𝑖

𝐹
𝑖

𝑋
𝑇

𝑖
𝐶
𝑇

𝑖
𝑆

𝑇

𝑖
(𝑋) 𝑆

𝑇

𝑖
(𝑋)

∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖
0 0

∗ ∗ −𝐼 0 0

∗ ∗ ∗ 𝑅
𝑖

0

∗ ∗ ∗ ∗ �̃�
𝑖

]

]

]

]

]

]

]

< 0, (28)

where

Ω
𝑖
= (𝐴
𝑖
𝑋
𝑖
+ 𝐵
𝑖
𝑌
𝑖
)
⋆

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑋
𝑇

𝑖
𝐸
𝑇

𝑆
𝑇

𝑖
(𝑋) = [ √𝜆

𝑖1
𝑋
𝑇

𝑖
⋅ ⋅ ⋅ √𝜆

𝑖(𝑖−1)
𝑋
𝑇

𝑖
√𝜆
𝑖(𝑖+1)

𝑋
𝑇

𝑖
⋅ ⋅ ⋅ √𝜆

𝑖𝑁
𝑋
𝑇

𝑖

]

𝑆

𝑇

𝑖
(𝑋) = [ √𝜆

𝑖1
𝑋
𝑇

𝑖
𝐸
𝑇

⋅ ⋅ ⋅ √𝜆
𝑖(𝑖−1)

𝑋
𝑇

𝑖
𝐸
𝑇

√𝜆
𝑖(𝑖+1)

𝑋
𝑇

𝑖
𝐸
𝑇

⋅ ⋅ ⋅ √𝜆
𝑖𝑁
𝑋
𝑇

𝑖
𝐸
𝑇
]

𝑅
𝑖
= − diag {4𝑇

𝑖1
, . . . , 4𝑇

𝑖(𝑖−1)
, 4𝑇
𝑖(𝑖+1)

. . . , 4𝑇
𝑖𝑁
}

�̃�
𝑖
= − diag {(𝑋

1
)
⋆

− 𝑇
𝑖1
, . . . , (𝑋

𝑖−1
)
⋆

− 𝑇
𝑖(𝑖−1)

, (𝑋
𝑖+1

)
⋆

− 𝑇
𝑖(𝑖+1)

, . . . , (𝑋
𝑁
)
⋆

− 𝑇
𝑖𝑁
}

(29)

hold for all 𝑖 ∈ Swith constraint (4).The controller gain𝐾
𝑖
can

be constructed as

𝐾
𝑖
= 𝑌
𝑖
𝑋
−1

𝑖
. (30)

Proof. Substituting𝐴
𝑖
with𝐴

𝑖
+𝐵
𝑖
𝐾
𝑖
, then by similarmethod

in Theorem 10 with (28), we can obtain Theorem 12. Thus, it
is omitted here.

Remark 13. It is seen that such conditions have equation
constraint (28), which are not strict LMIs. In addition,

the desired controller (7) is mode dependent, which requires
its system mode to be available online. This makes the scope
of application limited. In order to deal with this practical
condition, mode-independent control is usually used. Based
on the methods in [28, 29], such problems can be solved
easily.

3.2. Discrete-Time Markovian Jump Linear Systems

Theorem 14. Given a scalar 𝛾 > 0, the unforced system
(9) with constraint (12) is stochastically admissible with 𝐻

∞

performance if there exist matrices 𝑃
𝑖
,𝐺
𝑖
, and 𝑇

𝑖𝑗
> 0 such that
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𝐸
𝑇

𝑃
𝑖
𝐸 ≥ 0, (31)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖11

Φ
𝑖12

0 0 𝐺
𝑇

𝑖
𝐶
𝑇

𝑖
𝐺
𝑇

𝑖
0

∗ Φ
𝑖22

𝐺
𝑇

𝑖
0 0 0 0

∗ ∗ −2𝐼 +
̂
𝑇
𝑖𝑗

̂
𝑇
𝑖𝑗
𝐹
𝑖

0 0 𝑆
𝑖1
(𝑃)

∗ ∗ ∗ −𝛾
2

𝐼 + 𝐹
𝑇

𝑖

̂
𝑇
𝑖𝑗
𝐹
𝑖

𝐷
𝑇

𝑖
0 𝑆

𝑖2
(𝑃)

∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜋
𝑖
𝐸
𝑇

𝑃
𝑖
𝐸 − 2𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ �̃�
𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (32)

where

Φ
𝑖11

= (𝐴
𝑖
𝐺
𝑖
− 𝐺
𝑖
)
⋆

, Φ
𝑖12

= 𝐺
𝑇

𝑖
𝐴
𝑇

𝑖
− 𝐺
𝑖
,

Φ
𝑖22

= −2𝐺
𝑖
− 2𝐺
𝑇

𝑖

̂
𝑇
𝑖𝑗
=

1

4

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑇
𝑖𝑗
, 𝐺

𝑖
= 𝐺
𝑖
+ 𝐼,

𝜋
𝑖
=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
, �̃�

𝑖
= − diag {𝑇

𝑖1
, . . . , 𝑇

𝑖𝑁
}

𝑆
𝑇

𝑖1
(𝑃) = [√𝜋

𝑖1
𝑃
1

⋅ ⋅ ⋅ √𝜋
𝑖𝑁
𝑃
𝑁
] ,

𝑆
𝑇

𝑖2
(𝑃) = [√𝜋

𝑖1
𝐹
𝑇

𝑖
𝑃
1

⋅ ⋅ ⋅ √𝜋
𝑖𝑁
𝐹
𝑇

𝑖
𝑃
𝑁
]

(33)

hold for all 𝑖 ∈ 𝑆.

Proof. From (16) and (17), similar to [23], we have

(18) = 𝑍
𝑇

1
𝑍
𝑇

2
𝑍
𝑇

3
(Ψ
𝑖
+ Π
𝑇

𝑖
�̂�
𝑖
Π
𝑖
)𝑍
3
𝑍
2
𝑍
1
, (34)

where

𝑍
1
=

[

[

[

[

𝐺
−1

𝑖
0 0

𝐺
−1

𝑖
𝐴
𝑖

0 0

0 𝐼 0

0 0 𝐼

]

]

]

]

, 𝑍
2
=

[

[

[

[

[

[

𝐼 0 0 0

0 𝐼 0 0

0 𝐺
𝑖

0 0

0 0 𝐼 0

0 0 0 𝐼

]

]

]

]

]

]

,

𝑍
3
=

[

[

[

[

[

[

[

[

𝐼 0 0 0 0

0 𝐼 0 0 0

0 0 𝐼 0 0

0 0 0 𝐼 0

0 0 0 0 𝐼

𝐺
𝑖

0 0 0 0

]

]

]

]

]

]

]

]

Π
𝑇

𝑖
=

[

[

[

[

[

[

[

[

0

0

𝐼

𝐹
𝑇

𝑖

0

0

]

]

]

]

]

]

]

]

,

Ψ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖11

Φ
𝑖12

0 0 𝐺
𝑇

𝑖
𝐶
𝑇

𝑖
𝐺
𝑇

𝑖

∗ Φ
𝑖22

𝐺
𝑇

𝑖
0 0 0

∗ ∗ −2𝐼 0 0 0

∗ ∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖
0

∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝐸
𝑇

𝑃
𝑖
𝐸 − 2𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(35)

Since ∑
𝑁

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗

≤ ∑
𝑁

𝑗=1
𝜋
𝑖𝑗
(

1

4

𝑇
𝑖𝑗
+ 𝑃
𝑗
𝑇
−1

𝑖𝑗
𝑃
𝑗
) with 𝑇

𝑖𝑗
> 0,

∀𝑖, 𝑗 ∈ S and (12), we have

Π
𝑇

𝑖
�̂�
𝑖
Π
𝑖
≤ Π
𝑇

𝑖
(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(

1

4

𝑇
𝑖𝑗
+ 𝑃
𝑗
𝑇
−1

𝑖𝑗
𝑃
𝑗
))Π

𝑖
. (36)

From (12), we obtain that

𝜋
𝑖
𝐸
𝑇

𝑃
𝑖
𝐸 =

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑃
𝑖
𝐸 ≤

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑃
𝑖
𝐸. (37)

Taking into account (34), (36), and (37), we have

Ψ
𝑖
+ Π
𝑇

𝑖
�̂�
𝑖
Π
𝑖
≤ Ψ
𝑖
+ Π
𝑇

𝑖
(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
𝑇
−1

𝑖𝑗
𝑃
𝑗
)Π
𝑖
< 0, (38)

where
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Ψ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖11

Φ
𝑖12

0 0 𝐺
𝑇

𝑖
𝐶
𝑇

𝑖
𝐺
𝑇

𝑖

∗ Φ
𝑖22

𝐺
𝑇

𝑖
0 0 0

∗ ∗ −2𝐼 +
̂
𝑇
𝑖𝑗

̂
𝑇
𝑖𝑗
𝐹
𝑖

0 0

∗ ∗ ∗ −𝛾
2

𝐼 + 𝐹
𝑇

𝑖

̂
𝑇
𝑖𝑗
𝐹
𝑖

𝐷
𝑇

𝑖
0

∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜋
𝑖
𝐸
𝑇

𝑃
𝑖
𝐸 − 2𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

. (39)

Then, by the Schur complement, we see that (32) is equivalent
to (38). This completes the proof.

Remark 15. It should be remarked that when 𝐸 = 𝐼 in (9),
[24] gave important criteria under the constraint (12) via
∑
𝑁

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗

≤ ∑
𝑁

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
and ∑

𝑁

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑖
≤ ∑
𝑁

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑖
, where

𝑃
𝑗
must be positive-definite matrix which is not applicable

in SMJSs. In SMJS (9), 𝑃
𝑖
is only required to be nonsingular

matrix. In the above proof, we remove this constraint via (36).

In particular, if 𝐸 = 𝐼, then �̂�
𝑖
≤ ∑
𝑁

𝑗=1
𝜋
𝑖𝑗
((1/4)𝑇

𝑖𝑗
+ 𝑃
𝑗
𝑇
−1

𝑖𝑗
𝑃
𝑗
).

Let 𝑇
𝑖𝑗
= 2𝑃
𝑗
; we have (1/4)𝑇

𝑖𝑗
+ 𝑃
𝑗
𝑇
−1

𝑖𝑗
𝑃
𝑗
= 𝑃
𝑗
; thus, we have

�̂�
𝑖
≤ ∑
𝑁

𝑗=1
𝜋
𝑖𝑗
((1/4)𝑇

𝑖𝑗
+ 𝑃
𝑗
𝑇
−1

𝑖𝑗
𝑃
𝑗
) ≤ ∑

𝑁

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
.

Theorem 16. Given a scalar 𝛾 > 0, there exists a state feedback
controller in the form of (15) such that the resulting closed-loop
system (9) is stochastically admissible with (14), if there exist
matrices 𝐺

𝑖
, 𝑃
𝑖
, 𝑌
𝑖
, and 𝑇

𝑖𝑗
> 0 such that

𝐸
𝑇

𝑃
𝑖
𝐸 ≥ 0 (40)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖11

Φ
𝑖12

0 0 𝐺
𝑇

𝑖
𝐶
𝑇

𝑖
𝐺
𝑇

𝑖
0

∗ Φ
𝑖22

𝐺
𝑇

𝑖
0 0 0 0

∗ ∗ −2𝐼 +
̂
𝑇
𝑖𝑗

̂
𝑇
𝑖𝑗
𝐹
𝑖

0 0 𝑆
𝑖1
(𝑃)

∗ ∗ ∗ −𝛾
2

𝐼 + 𝐹
𝑇

𝑖

̂
𝑇
𝑖𝑗
𝐹
𝑖

𝐷
𝑇

𝑖
0 𝑆

𝑖2
(𝑃)

∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜋
𝑖
𝐸
𝑇

𝑃
𝑖
𝐸 − 2𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ �̃�
𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (41)

where

Φ̂
𝑖11

= (𝐴
𝑖
𝐺
𝑖
+ 𝐵
𝑖
𝑌
𝑖
− 𝐺
𝑖
)
⋆

, Φ̂
𝑖12

= 𝐺
𝑇

𝑖
𝐴
𝑇

𝑖
+ 𝑌
𝑇

𝑖
𝐵
𝑇

𝑖
− 𝐺
𝑖

(42)

hold for all 𝑖 ∈ S with constraint (12). The controller gain 𝐾
𝑖

can be constructed as

𝐾
𝑖
= 𝑌
𝑖
𝐺
−1

𝑖
. (43)

4. Numerical Examples

In this section, numerical examples are given to demonstrate
the effectiveness of proposed theory.

Example 1. Consider the following continuous-time SMJS as
(1) described as

𝐸 =
[

[

1 0 0

0 1 0

0 0 0

]

]

, 𝐴
1
=

[

[

0.1 −0.2 0

0.5 −1 −0.5

0.1 0 0.4

]

]

,

𝐴
2
=

[

[

0.1 −1 0

−0.3 −1 0.4

0 0.2 0.1

]

]

, 𝐴
3
=

[

[

0.6 0 0.4

−0.4 0 0.7

−0.3 0.1 −0.4

]

]

,

𝐵
1
=

[

[

1

0

−1

]

]

, 𝐵
2
=

[

[

0

−1

1

]

]

, 𝐵
3
=

[

[

−1

0

0

]

]

,

𝐹
1
=

[

[

0.1

0.2

−0.1

]

]

, 𝐹
2
=

[

[

0.1

−0.2

0.1

]

]

, 𝐹
3
=

[

[

−0.1

0.2

0.1

]

]

,
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𝐶
1
= [1 0 0] , 𝐶

2
= [0 1 1] , 𝐶

3
= [1 −1 1] ,

𝐷
1
= 0.2, 𝐷

2
= 0.1, 𝐷

3
= −0.3.

(44)

Assume the bound transition probability matrices are

Λ =
[

[

−2.5 1.3 1.2

0.8 −1.9 1.1

0.8 0.7 −1.5

]

]

, Λ =
[

[

−2.9 1.5 1.4

1 −2.2 1.2

1 0.9 −1.9

]

]

.

(45)

By the method in [25], we find that it is infeasible for this
system no matter 𝛾 takes any values. However, for 𝛾 = 0.8,
via Theorem 12, we obtain the controller gain

𝐾
1
= [−6.3315 10.0669 96.5153] ,

𝐾
2
= [2.9966 −9.0875 −59.5261] ,

𝐾
3
= [24.7500 −22.4333 −17.1457] .

(46)

Example 2. Consider the following discrete-time SMJS as (9)
described as

𝐸 = [

0.5 0.6

1 1.2
] , 𝐴

1
= [

0.1 0.8

0.15 1
] ,

𝐴
2
= [

1.1 0.6

0.5 −1
] , 𝐴

3
= [

0.1 1

0.5 −0.9
] ,

𝐵
1
= [

0

−1
] , 𝐵

2
= [

1

1
] , 𝐵

3
= [

−1

1
] ,

𝐹
1
= [

0.1

0.2
] , 𝐹

2
= [

0.1

−0.2
] , 𝐹

3
= [

−0.1

0.2
] ,

𝐶
1
= [1 0] , 𝐶

2
= [0 1] , 𝐶

3
= [1 −1] ,

𝐷
1
= 𝐷
2
= 0.1, 𝐷

3
= −0.1.

(47)

Assume the bound transition probability matrices are

Λ =
[

[

0.2 0.4 0

0.3 0 0.3

0.1 0.4 0.1

]

]

, Λ =
[

[

0.6 0.8 0

0.7 0 0.5

0.3 0.7 0.3

]

]

. (48)

Let 𝛾 = 1; then via Theorem 16, we obtain the controller gain

𝐾
1
= [12.3040 9.9997]

𝐾
2
= [−13.0975 −4.5714]

𝐾
3
= [10.6808 −7.6430] .

(49)

Example 3. In order to do some comparison, consider the
following discrete-time normal state-spaceMJS which can be
obtained by (9) with 𝐸 = 𝐼 and is described as

𝐴
1
= [

0.8 −0.1

0.2 0.5
] , 𝐴

2
= [

0.6 0

−0.1 0.2
] ,

𝐴
3
= [

−0.6 1

0 0.7
] 𝐵

1
= [

0

0.1
] , 𝐵

2
= [

0.1

0
] ,

𝐵
3
= [

0

0.2
] 𝐶

1
= [−0.2 0] , 𝐶

2
= [0.6 0] ,

𝐶
3
= [0.3 0] 𝐷

1
= −0.4, 𝐷

2
= 0.2, 𝐷

3
= 0.3.

(50)

Assume the bound transition probability matrices are

Λ =
[

[

0.2 0.4 0

0.3 0 0.3

0.1 0.4 0.1

]

]

, Λ =
[

[

0.6 0.8 0

0.7 0 0.5

0.3 0.7 0.3

]

]

. (51)

By themethod in [24], we have theminimum 𝛾
∗

= 2.45, while
via Theorem 16, we obtain 𝛾

∗

= 0.43. By this example, it is
seen that our method is less conservative.

5. Conclusions

In this paper, the problems of 𝐻
∞

control for both con-
tinuous-time and discrete-time SMJSs with bounded transi-
tion probabilities have been investigated. Less conservative
sufficient criteria for SMJSs to be stochastically admissible
with 𝐻

∞
performance are given by the LMI approach.

Based on the obtained conditions, a kind of state feedback
controller, such that not only stochastic admissibility but
also a prescribed 𝐻

∞
performance level is guaranteed, can

be computed. Finally, numerical examples are provided to
illustrate the advantage and effectiveness of the presented
results in this paper.
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