1,785 research outputs found

    Local orbital-angular-momentum dependent surface states with topological protection

    Get PDF
    Chiral surface states along the zigzag edge of a valley photonic crystal in the honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular momentum (OAM) modes, we find that the chiral surface states present OAM-dependent unidirectional propagation characteristics. Particularly, the propagation directivities of the surface states are quantified by the local OAM decomposition and are found to depend on the chiralities of both the source and surface states. These findings allow for the engineering control of the unidirectional propagation of electromagnetic energy without requiring an ancillary cladding layer. Furthermore, we examine the propagation of the chiral surface states against sharp bends. It turns out that although only certain states successfully pass through the bend, the unidirectional propagation is well maintained due to the topology of the structure.Comment: 9 pages, 6 figure

    Mixing of spin and orbital angular momenta via second-harmonic generation in plasmonic and dielectric chiral nanostructures

    Get PDF
    We present a theoretical study of the characteristics of the nonlinear spin-orbital angular momentum coupling induced by second-harmonic generation in plasmonic and dielectric nanostructures made of centrosymmetric materials. In particular, the connection between the phase singularities and polarization helicities in the longitudinal components of the fundamental and second-harmonic optical fields and the scatterer symmetry properties are discussed. By in-depth comparison between the interaction of structured optical beams with plasmonic and dielectric nanostructures, we have found that all-dielectric and plasmonic nanostructures that exhibit magnetic and electric resonances have comparable second-harmonic conversion efficiency. In addition, mechanisms for second-harmonic enhancement for single and chiral clusters of scatterers are unveiled and the relationships between the content of optical angular momentum of the incident optical beams and the enhancement of nonlinear light scattering is discussed. In particular, we formulate a general angular momenta conservation law for the nonlinear spin-orbital angular momentum interaction, which includes the quasi-angular-momentum of chiral structures with different-order rotational symmetry. As a key conclusion of our study relevant to nanophotonics, we argue that all-dielectric nanostructures provide a more suitable platform to investigate experimentally the nonlinear interaction between spin and orbital angular momenta, as compared to plasmonic ones, chiefly due to their narrower resonance peaks, lower intrinsic losses, and higher sustainable optical power

    How complex is the microarray dataset? A novel data complexity metric for biological high-dimensional microarray data

    Full text link
    Data complexity analysis quantifies the hardness of constructing a predictive model on a given dataset. However, the effectiveness of existing data complexity measures can be challenged by the existence of irrelevant features and feature interactions in biological micro-array data. We propose a novel data complexity measure, depth, that leverages an evolutionary inspired feature selection algorithm to quantify the complexity of micro-array data. By examining feature subsets of varying sizes, the approach offers a novel perspective on data complexity analysis. Unlike traditional metrics, depth is robust to irrelevant features and effectively captures complexity stemming from feature interactions. On synthetic micro-array data, depth outperforms existing methods in robustness to irrelevant features and identifying complexity from feature interactions. Applied to case-control genotype and gene-expression micro-array datasets, the results reveal that a single feature of gene-expression data can account for over 90% of the performance of multi-feature model, confirming the adequacy of the commonly used differentially expressed gene (DEG) feature selection method for the gene expression data. Our study also demonstrates that constructing predictive models for genotype data is harder than gene expression data. The results in this paper provide evidence for the use of interpretable machine learning algorithms on microarray data

    Preventive effects of Flos Perariae (Gehua) water extract and its active ingredient puerarin in rodent alcoholism models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Radix Puerariae </it>is used in Chinese medicine to treat alcohol addiction and intoxication. The present study investigates the effects of <it>Flos puerariae </it>lobatae water extract (FPE) and its active ingredient puerarin on alcoholism using rodent models.</p> <p>Methods</p> <p>Alcoholic animals were given FPE or puerarin by oral intubation prior or after alcohol treatment. The loss of righting reflex (LORR) assay was used to evaluate sedative/hypnotic effects. Changes of gama-aminobutyric acid type A receptor (GABA<sub>A</sub>R) subunits induced by alcohol treatment in hippocampus were measured with western blot. In alcoholic mice, body weight gain was monitored throughout the experiments. Alcohol dehydrogenase (ADH) levels in liver were measured.</p> <p>Results</p> <p>FPE and puerarin pretreatment significantly prolonged the time of LORR induced by diazepam in acute alcoholic rat. Puerarin increased expression of gama-aminobutyric acid type A receptor alpha1 subunit and decreased expression of alpha4 subunit. In chronic alcoholic mice, puerarin pretreatment significantly increased body weight and liver ADH activity in a dose-dependent manner. Puerarin pretreatment, but not post-treatment, can reverse the changes of gama-aminobutyric acid type A receptor subunit expression and increase ADH activity in alcoholism models.</p> <p>Conclusion</p> <p>The present study demonstrates that FPE and its active ingredient puerarin have preventive effects on alcoholism related disorders.</p

    Experimental Investigation of Polyurea-Coated Steel Plates at Underwater Explosive Loading

    Get PDF
    To improve the survivability of ship structures at underwater explosion, thin steel plates coated with polyurea were used to investigate the blast protection effect. During the experimental tests of bare steel plates at different standoff, an appropriate distance was selected as the reference standoff to perform the tests of coated plates. Experimental tests of different coating locations (front versus back) and coating thickness were carried out to study the influencing factors of blast resistance for metal substrate plates. Compared with the bare steel plates, the polyurea coating was found to reduce the deformation of the test plates at blast tests in both cases of the front and back surface locations of the polyurea layer. An increase in the coating thickness also mitigates substantially the deformation of plates. In addition, the properties of the material and the substrate-coating bond strength may also affect the protective effect of the polyurea coating
    • …
    corecore