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Abstract: Chiral surface states along the zigzag edge of a valley photonic crystal in the
honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular
momentum (OAM) modes, we find that the chiral surface states present OAM-dependent
unidirectional propagation characteristics. Particularly, the propagation directivities of the surface
states are quantified by the local OAM decomposition and are found to depend on the chiralities
of both the source and surface states. These findings allow for the engineering control of the
unidirectional propagation of electromagnetic energy without requiring an ancillary cladding
layer. Furthermore, we examine the propagation of the chiral surface states against sharp bends.
It turns out that although only certain states successfully pass through the bend, the unidirectional
propagation is well maintained due to the topology of the structure.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As a new phase of matter, topological insulators that preserve time-reversal symmetry have been
extensively studied [1,2]. In a two-dimensional (2D) topological insulator, there exist two edge
channels associated with different spin orientations of the occupying electrons [3,4], forming
quantum spin Hall (QSH) states. Interestingly, topological insulators have their analogues in
electromagnetics [5]. To mimic the spin degree of freedom of electrons, different schemes in
electromagnetics have been proposed and verified [6–14]. For example, in a simple scenario
using dielectric photonic crystals (PCs) with C6v symmetry [10], two degenerate modes with
pseudospin-up and -down polarizations are constructed from hexagonal clusters and pseudospin-
momentum locked edge states are supported at the interface between topologically nontrivial
and trivial PCs. Apart from spin, valley is another degree of freedom, which provides the valley
contrasting transport [15], i.e. the quantum valley Hall (QVH) effect. Correspondingly, the
electromagnetic (EM) version of the valley degree of freedom has also been studied [16–23].

The helical nature of the edge states in the topological PCs emulating spin degree of freedom
allows the unidirectional excitation and propagation of EM waves against moderate disorders and
sharp bends [10,12], which is quite different from the conventional PC waveguiding modes [24].
As for the valley PCs, when there is no inter-valley scattering, the unidirectional propagation can
be preserved, such as the reflection-free out-coupling into vacuum at the zigzag termination [16]
and the broadband robust transmission in the presence of sharp corners [17].
In this work, we present chiral edge states that are supported at the zigzag edge of a single

valley PC in contact with air, which is very different from previous studies where edge states are
supported at the interface separating two valley PCs symmetrical to each other under inversion
[16–23]. The edge states we considered are well localized at the edge sites and evanescent both
inside and outside the valley PC, and hence become surface states. We note that while surface
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states in PCs have been studied [25–27], their possible topological protection has not been studied
to the best of our knowledge. The interesting thing with these chiral surface states is that the
forward and backward propagating waves can be selectively excited by choosing the chirality of
the source. Furthermore, due to the topology of the valley PC, the unidirectional propagation of
the surface states is maintained when there are sharp bends.

2. Valley photonic crystals

A 2D PC arranged in a honeycomb lattice is shown in Fig. 1(a). a1 and a2 are the two translation
vectors with the length of a0, i.e. the lattice constant. There are two types of cylinders with
the same dielectric constant ε but different radii rA and rB. Only the transverse-magnetic (TM)
modes are considered, i.e. electric field only has the out-of-plane component and magnetic
field is confined to the xoy plane. We build a rectangular supercell with the periodic boundary
conditions imposed at the x and y directions. The lengths of the reassigned translation vectors
are Px = a0 along x and Py =

√
3a0 along y. Then, we calculate its band structure by using the

finite-difference (FD) method [28].

Fig. 1. 2D valley PC. (a) Geometry of the PC with translation vectors, a1 and a2. The inset
shows the supercell holding the periodicity along the x and y directions. Its band structure
when (b) rA = rB = 2.3 mm and (c) rA = 2 mm, rB = 2.6 mm with the right panel showing
the phase of Ez at the K and K ′ points. The dielectric constant of the cylinders ε = 12 and
a0 = 6

√
3 mm.

A Dirac point is where two linear dispersion curves intersect and the corresponding crystal
momenta in 2D k-space form the Dirac cone. Since Dirac cones appear at the K and K ′ points
in honeycomb lattices, while the rectangular supercell is used in the band structure calculation
for the convenience of FD method, the first Brillouin zone is calculated according to the two
translation vectors of a1 and a2. Figure 1(b) depicts the first four bands when rA = rB. There is
no band gap and two Dirac cones with a two-fold degeneracy appear as expected at the K and K ′
points. While when rA , rB, the inversion symmetry is broken, so the Dirac cones become two
valleys. The band gap is opened up from 6.95 GHz to 7.71 GHz in Fig. 1(c). The two valleys



Research Article Vol. 28, No. 10 / 11 May 2020 / Optics Express 14430

have the same eigenfrequency but they are inequivalent. The right panel of Fig. 1(c) shows the
phase of the four states (Ez) at the K and K ′ valleys. Obviously, the electric fields within the
supercells are OAM dependent. The electric fields carry an OAM of order 1 or −1, whose sign is
determined by the phase winding direction. The phase winding directions are opposite for the
second and third bands at the same valley. Meanwhile, they are opposite at the same band but
different valleys.

3. Surface states with chirality

Valley-dependent edge states have been observed at the interface of two valley PCs with
interchanged rA and rB [17,19] and one valley PC but with an external cladding [20]. In the
following, we will demonstrate the cladding-free guidance of valley-dependent edge states.

The supercell of the proposed structure is drawn in Fig. 2. The parameters of the valley PC are
the same as those of Fig. 1(c). We adopt the same FD solver described in the previous section
to solve this problem. Bloch boundary conditions are imposed on the left and right borders
while two perfectly matched layers are specified at the upper and lower borders of the supercell
based on the complex coordinate stretching approach [29]. The band structure is calculated by
sweeping kx from 0 to 2π/a0. The black dashed lines mark the band gap calculated in Fig. 1(c).
The gray regions are where the states are extended in the air. The surface states should locate
below the light lines and also within the band gap. Therefore, we can identify the surface states
on the blue line (from 7.35 GHz to 7.71 GHz), on which we marked four typical states. Note that
the periodicity of the structure along x is much smaller than the wavelength, so only zero-order
mode exists and the surface states have no loss along the x direction. The green triangles are
where the K and K ′ points locate and the purple triangles are two positions near kxa0/2π = 0.5.
According to the Bloch’s theorem, the branch with kxa0/2π<0.5 corresponds to kx>0, while the
branch with kxa0/2π>0.5 corresponds to kx<0. Hence, the modes represented by triangles have
negative wave number, while the modes represented by inverted triangles have positive wave
number.

Fig. 2. Geometry and band structure of the supercell composed of the valley PC in Fig. 1(c).
The dashed black lines indicate the band gap edges. The gray regions are where the states
are extended in the air. The surface states are on the blue line.

The real-space distributions of the electric fields (Ez) and the time-averaged Poynting vectors
at the four marked locations are plotted in Fig. 3. For the two states near kxa0/2π = 0.5, i.e.
in Figs. 3(b) and (c), the EM fields are pinned to the surface plane. In Figs. 3(a) and (d), the
EM fields at the K and K ′ points extend several lattices to the bulk, because the two states are
quite close to the upper boundary of band gap. From the distributions of Poynting vectors, we
can see for all the four surface states, the EM energy flows from one supercell to its adjacent
supercell, forming an effective wave-guiding channel. As expected, for the states on the left



Research Article Vol. 28, No. 10 / 11 May 2020 / Optics Express 14431

branch (Figs. 3(a) and (b)), the energy flows leftward with positive wave number and the states
on the right branch (Figs. 3(c) and (d)) propagate rightward with negative wave number. It is
worth noting that the left- and right-flowing energy paths are accompanied by half-cycle orbits,
indicating an inherent chirality of the surface states. The phase distributions of Ez within one
hexagonal cluster are drawn on the right panel. At the K and K ′ points, the phase distributions
are similar to those of the bulk states in Fig. 1(c): there is a gradual phase increment around the
center. Moreover, the directions of the increment are opposite for K and K ′ points. The chirality
of the surface states in Figs. 3(b) and (c) is hard to tell because besides the OAM of order ±1,
there are field components carrying no OAM.

Fig. 3. The surface states at the valley PC and air interface: the real-space distributions of
the electric fields, time-averaged Poynting vectors, and the phase distributions of the electric
fields at the four marked points on the band structure in Fig. 2. The white line indicates a
full circular path around the center of the hexagon formed by the six surrounding cylinders.

To quantify the chirality of the surface states, we extract Ez along a full circular path (the white
circle in Fig. 3) and decompose the extracted complex field into different OAM modes, i.e. onto
an orthonormal basis of eilφ (l is the OAM index). As illustrated in Fig. 4, at the K and K ′ points,
the zero-OAM mode is negligible, and for other kx, zero-OAM mode appears. These findings are
consistent with the results in Fig. 3.

The non-zero OAM modes have chirality. Obviously, the left and right branches have opposite
chirality. For almost all the states, only one OAM mode dominates. The frequencies of the
surface states with respect to kx can be accessed from the dispersion curve of these states (blue
segment in Fig. 2) and are also drawn in Fig. 4. The advantage of the chiral surface states is
that at a specific frequency, the right and left propagating states can be selectively excited by
a chiral source. For example, the OAM mode of order 1 dominates for the surface state at the
K point, but is quite weak for the surface state at the K ′ point. It means that although a source
carrying pure OAM of order 1 can excite both the surface states at the K and K ′ points, the state
excited at the K point will be much stronger. So the rightward propagating wave will be observed
and the leftward propagating wave will be very weak. Although there is a zero-OAM mode at
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Fig. 4. The projection of Ez of the surface states along the white circle in Fig. 3 onto an
orthonormal basis, eilφ left axis) and their corresponding frequencies (right axis).

most kx, it will have no effect on the sign of excited kx because it is orthogonal to the source
mode. Importantly, the OAM mode is pure at kxa0/2π = 0.445 and 0.555, corresponding to
7.39 GHz. Hence, at 7.39 GHz, a chiral source carrying an OAM of order −1 (1) will excite
the leftward (rightward) propagating surface state with the best propagation directivity. When a
source carries mixed OAM modes that exactly match with the decomposed results at certain kx,
the corresponding surface state can also be solely excited. One more thing worth mentioning is
that this decomposition scheme does not only apply in the surface states, but can also be used to
analyze the propagation directivity of edge states with cladding layers.

4. Simulation results

Based on our analyses above, the chiral surface states can be excited by a chiral source. In the
following, we use a six-line-source array to generate an OAM of order 1 and put it within the
hexagonal cluster as shown in Fig. 5(a). The whole structure is simulated in COMSOL. The
simulated amplitudes distributions of Ez at 7.39 GHz and 7.65 GHz (the K/K ′ points) are drawn in
Figs. 5(a) and (b). The fields being excited have the same profiles as the corresponding eigenstates
in Fig. 3. Meanwhile, as expected, we can observe a nearly perfect unidirectional propagation of
the excited surface states at 7.39 GHz. At 7.65 GHz, the main power goes rightward, but we can
still observe the backward propagation due to the existence of the OAM mode of order 1 at the K ′
point. Additionally, because the location of this state on the dispersion diagram is much closer to
the light line, the EM field is less localized and extends some distance from the edge sites to air.
Then, we define the propagation directivity by using the forward to backward (F/B) power

ratio, 10log10(U2/U1). Here, U1 and U2 denote the amount of the EM energy that flows through
the lines 1 and 2 (indicated by the dashed blue lines in Fig. 5(a)) and it is calculated using
U = 1/2

∫
l Re(E×H∗) ·ndl (n is the normal vector of 1 and 2), i.e. by doing the line integral along

1 and 2, respectively. Similarly, we define the right-to-left branch ratio as 20log10(Wright/Wleft).
Wright and Wleft are the magnitudes of the decomposed OAM modes of order 1 of the eigenstates
on the right and left branches (Fig. 4). Not surprisingly, the F/B power ratio has the peak at 7.39
GHz in Fig. 5(c). The unidirectional propagation is well preserved from 7.36 to 7.5 GHz (F/B
power ratio larger than 10 dB). Meanwhile, the The F/B power ratio shows the same trend as the
result obtained from the eigenstates, i.e. the right-to-left branch ratio, which validates our local
OAM-decomposition method for the analysis of the directivity of surface states. The local peak
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Fig. 5. The excited surface states by a six-line-source array carrying OAM of order 1. The
plotting frequencies are (a) 7.39 GHz and (b) 7.65 GHz. (c) The comparison between the
F/B power ratio and the right-to-left branch ratio.

at 7.44 GHz from the COMSOL simulations (red solid curve) could possibly be caused by the
imperfect absorption of the surface states at the scattering boundaries.

5. Sharp bends

We explore the behavior of the chiral surface states when a sharp bend is introduced. In Fig. 6,
a 60-degree bend is made and the same chiral source carrying an OAM of order 1 is used for
excitation. At 7.65 GHz, i.e. the K point, the wave vectors before and after the corner are drawn
in the right panel of Fig. 6(b). The two wave vectors differing by an integer number of reciprocal
lattice vectors are considered to be equivalent. Hence, there will be no momentum mismatch
before and after the corner and the transmission experiences no loss. This state is near the light
line, so the EM fields extend to air, just like the result in Fig. 5(b). Apart from the K point, the
symmetry of the crystal cannot compensate for the momentum difference before and after the
corner. So, we can see in Figs. 6(a) and (c) that the surface states cannot effectively propagate
against the bend. Interestingly, the field distributions at the three frequencies have a common
feature that the propagation directivity is maintained when there is a bend. It is obvious for the
surface state at 7.39 GHz: although the power cannot go through the bend, it can neither go back
to the source. This finding is consistent with the results in [16], which results from the topology
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of the valley PC. The rest of the power is allowed to radiate out to the air at the corner, which can
be seen in Figs. 6(a) and (c).

Fig. 6. Surface states against sharp bends. The surface sates are excited by a six-line-source
array carrying OAM of order 1. The plotting frequencies are (a) 7.39 GHz, (b) 7.65 GHz
and (c) 7.7 GHz.

6. Conclusion

In conclusion, we have proposed and analyzed the surface states at the zigzag edge of a valley
PC. By decomposing the electric field within a hexagonal cluster at the edge into different OAM
modes, we identify the chirality of the surface states. By calculating the ratio of the decomposed
OAM modes, the leftward and rightward transferred energies are quantified. Furthermore, the
decomposition results can help us to selectively excite the left and right propagating surface
states. Due to the topology of the valley PC, when a sharp bend is introduced, the chiral surface
state exhibits the same propagation directivity as the straight one. The surface states at the K and
K ′ points can propagate through the bend and the others will leak out of the corner.
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