440 research outputs found

    Substitution of Ni for Fe in superconducting Fe0.98_{0.98}Te0.5_{0.5}Se0.5_{0.5} depresses the normal-state conductivity but not the magnetic spectral weight

    Full text link
    We have performed systematic resistivity and inelastic neutron scattering measurements on Fe0.98z_{0.98-z}Niz_zTe0.5_{0.5}Se0.5_{0.5} samples to study the impact of Ni substitution on the transport properties and the low-energy (\le 12 meV) magnetic excitations. It is found that, with increasing Ni doping, both the conductivity and superconductivity are gradually suppressed; in contrast, the low-energy magnetic spectral weight changes little. Comparing with the impact of Co and Cu substitution, we find that the effects on conductivity and superconductivity for the same degree of substitution grow systematically as the atomic number of the substituent deviates from that of Fe. The impact of the substituents as scattering centers appears to be greater than any contribution to carrier concentration. The fact that low-energy magnetic spectral weight is not reduced by increased electron scattering indicates that the existence of antiferromagnetic correlations does not depend on electronic states close to the Fermi energy.Comment: 6 pages, 5 figure

    Active-Site Models of Streptococcus pyogenes Cas9 in DNA Cleavage State

    Get PDF
    CRISPR-Cas9 is a powerful tool for target genome editing in living cells. Significant advances have been made to understand how this system cleaves target DNA. However, due to difficulty in determining active CRISPR-Cas9 structure in DNA cleavage state by X-ray and cryo-EM, it remains uncertain how the HNH and RuvC nuclease domains in CRISPR-Cas9 split the DNA phosphodiester bonds with metal ions and water molecules. Therefore, based on one-and two-metal-ion mechanisms, homology modeling and molecular dynamics simulation (MD) are suitable tools for building an atomic model of Cas9 in the DNA cleavage state. Here, by modeling and MD, we presented an atomic model of SpCas9-sgRNA-DNA complex with the cleavage state. This model shows that the HNH and RuvC conformations resemble their DNA cleavage state where the active-sites in the complex coordinate with DNA, Mg2+ ions and water. Among them, residues D10, E762, H983 and D986 locate at the first shell of the RuvC active-site and interact with the ions directly, residues H982 or/and H985 are general (Lewis) bases, and the coordinated water is located at the positions for nucleophilic attack of the scissile phosphate. Meanwhile, this catalytic model led us to engineer new SpCas9 variant (SpCas9-H982A + H983D) with reduced off-target effects. Thus, our study provides new mechanistic insights into the CRISPR-Cas9 system in the DNA cleavage state, and offers useful guidance for engineering new CRISPR-Cas9 editing systems with improved specificity

    Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes

    Get PDF
    It is shown that photonic crystal (PhC) optical reflectors with reflectance in excess of 60% and fractional bandwidths greater than 10% can be fabricated by ion beam milling of fewer than ten periods of rectangular cross section through-holes in micron-scale tapered fibers. The optical characteristics agree well with numerical simulations when allowance is made for fabrication artefacts and we show that the radiation loss, which is partly determined by optical interference, can be suppressed by design. The freely-suspended devices are compact and robust and could form the basic building block of optical cavities and filters. (C) 2014 Optical Society of AmericaOpticsSCI(E)[email protected]

    Manganese affects the growth and metabolism of Ganoderma lucidum based on LC-MS analysis

    Get PDF
    Background As a metal-enriched edible fungus, Ganoderma lucidum is capable of adsorbing manganese effectively. And the manganese ion is demonstrated to play an important role in the synthesis of manganese peroxidase (Mnp) and other physiological activities during G. lucidum growth. Recently, the influence of manganese on the metabolites of G. lucidum fruiting bodies can be revealed through metabonomics technique. Methods In this study, we uncovered the changes between the control and 200 mg/kg Mn-treated fruiting bodies with liquid chromatography coupled to mass spectrometry (LC-MS). Results The mycelial growth rate, dry yield, Mnp activity , total polysaccharide content, triterpenoid content, and total manganese content in the mature fruiting bodies of G. lucidum changed between the control and different Mn-treated groups. Based on LC-MS method, a total of 16 significantly different metabolites were obtained and identified, among which, five presented significantly down-regulated and 11 up-regulated in Mn-treated samples. The metabolites chavicol and palmitoylethanolamide were particularly significantly up-regulated, and were found the strong promotion relationship. Dependent on the MetPA database, four KEGG pathways were detected and glycerophospholipid metabolism was most impacted, in which, choline was involved in. Discussion The added manganese ion in the substrate enhanced Mnp activities, and consequently promoted the mycelial growth, yield , metabolites in the fruiting bodies including triterpenoids, total manganese, chavicol, etc. Our finding can provide a theoretical reference to regulation of manganese on the physiological metabolism of G. lucidum

    Tetramethylpyrazine attenuates spinal cord ischemic injury due to aortic cross-clamping in rabbits

    Get PDF
    BACKGROUND: Lower limb paralysis occurs in 11% of patients after surgical procedure of thoracic or thoracoabdominal aneurysms and is an unpredictable and distressful complication. The aim of this study was to investigate the effects of tetramethylpyrazine (TMP), an intravenous drug made from traditional Chinese herbs, on the neurologic outcome and hisotpathology after transient spinal cord ischemia in rabbits. METHODS: Forty-five male New Zealand white rabbits were anesthetized with isoflurane and spinal cord ischemia was induced for 20 min by infrarenal aortic occlusion. Animals were randomly allocated to one of five groups (n = 8 each). Group C received no pharmacologic intervention. Group P received intravenous infusion of 30 mg·kg(-1) TMP within 30 min before aortic occlusion. Group T(1), Group T(2) and Group T(3) received intravenous infusion of 15, 30 and 60 mg·kg(-1) TMP respectively within 30 min after reperfusion. In the sham group (n = 5), the animals underwent the same procedures as the control group except infrarental aortic unocclusion. Neurologic status was scored by using the Tarlov criteria (in which 4 is normal and 0 is paraplegia) at 4 h, 8 h, 12 h, 24 h, and 48 h after reperfusion. All animals were sacrificed at 48 h after reperfusion and the spinal cords (L(5)) were removed immediately for histopathologic study. RESULTS: All animals in the control group became paraplegic. Neurologic status and histopathology (48 h) in the Groups P, T(2) and T(3) were significantly better than those in the control group (P < 0.05). There was a strong correlation between the final neurologic scores and the number of normal neurons in the anterior spinal cord (r = 0.776, P < 0.01). CONCLUSION: Tetramethylpyrazine significantly reduces neurologic injury related to spinal cord ischemia and reperfusion after aortic occlusion within a certain range of dose

    Genetic Variation in the EGFR Gene and the Risk of Glioma in a Chinese Han Population

    Get PDF
    Previous studies have shown that regulation of the epidermal growth factor gene (EGFR) pathway plays a role in glioma progression. Certain genotypes of the EGFR gene may be related to increased glioblastoma risk, indicating that germ line EGFR polymorphisms may have implications in carcinogenesis. To examine whether and how variants in the EGFR gene contribute to glioma susceptibility, we evaluated nine tagging single-nucleotide polymorphisms (tSNPs) of the EGFR gene in a case–control study from Xi'an city of China (301 cases, 302 controls). EGFR SNP associations analyses were performed using SPSS 16.0 statistical packages, PLINK software, Haploview software package (version 4.2) and SHEsis software platform. We identified two susceptibility tSNPs in the EGFR gene that were potentially associated with an increased risk of glioma (rs730437, p = 0.016; OR: 1.32; 95%CI: 1.05–1.66 and rs1468727, p = 0.008; OR: 1.31; 95%CI: 1.04–1.65). However, after a strict Bonferroni correction analysis was applied, the significance level of the association between EGFR tSNPs and risk of glioma was attenuated. We observed a protective effect of haplotype “AATT” of the EGFR gene, which was associated with a 29% reduction in the risk of developing glioma, while haplotype “CGTC” increased the risk of developing glioma by 36%. Our results, combined with previous studies, suggested an association between the EGFR gene and glioma development
    corecore