143,681 research outputs found

    The Impact of Sensing Range on Spatial-Temporal Opportunity

    Get PDF
    In this paper, we study the impact of secondary user (SU) sensing range on spectrum access opportunity in cognitive radio networks. We first derive a closed-form ex- pression of spectrum access opportunity by taking into ac- count the random variations in number, locations and trans- mitted powers of primary users (PUs). Then, we show how SU sensing range affects spectrum access opportunity, and the tradeoff between SU sensing range and spectrum ac- cess opportunity is formulated as an optimization problem to maximize spectrum access opportunity. Furthermore, we prove that there exists an optimal SU sensing range which yields the maximum spectrum access opportunity, and nu- merical results validate our theoretical analysis

    Flexible protein folding by ant colony optimization

    Get PDF
    Protein structure prediction is one of the most challenging topics in bioinformatics. As the protein structure is found to be closely related to its functions, predicting the folding structure of a protein to judge its functions is meaningful to the humanity. This chapter proposes a flexible ant colony (FAC) algorithm for solving protein folding problems (PFPs) based on the hydrophobic-polar (HP) square lattice model. Different from the previous ant algorithms for PFPs, the pheromones in the proposed algorithm are placed on the arcs connecting adjacent squares in the lattice. Such pheromone placement model is similar to the one used in the traveling salesmen problems (TSPs), where pheromones are released on the arcs connecting the cities. Moreover, the collaboration of effective heuristic and pheromone strategies greatly enhances the performance of the algorithm so that the algorithm can achieve good results without local search methods. By testing some benchmark two-dimensional hydrophobic-polar (2D-HP) protein sequences, the performance shows that the proposed algorithm is quite competitive compared with some other well-known methods for solving the same protein folding problems

    Heavy paths and cycles in weighted graphs

    Get PDF
    A weighted graph is a graph in which each edge e is assigned a non-negative\ud number w(e)w(e), called the weight of ee. In this paper, some theorems on the\ud existence of long paths and cycles in unweighted graphs are generalized to heavy\ud paths and cycles in weighted graphs

    Directed paths with few or many colors in colored directed graphs

    Get PDF
    Given a graph D=(V(D),A(D))D=(V(D),A(D)) and a coloring of DD, not necessarily a proper coloring of either the arcs or the vertices of DD, we consider the complexity of finding a path of DD from a given vertex ss to another given vertex tt with as few different colors as possible, and of finding one with as many different colors as possible. We show that the first problem is polynomial-time solvable, and that the second problem is NP-hard. \u

    Data Unfolding with Wiener-SVD Method

    Full text link
    Data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.Comment: 26 pages, 12 figures, match the accepted version by JINS
    • …
    corecore