13,383 research outputs found

    Assessing the integrity of steel structural components with stress raisers using the Theory of Critical Distances

    Get PDF
    This paper assesses and evaluates the detrimental effect of standard and complex geometrical features on the static strength of samples made of Q460 steel. The experimental results generated by testing four types of notched specimens were analyzed using the Theory of Critical Distances (TCD). The considered configurations included uniaxial tension tests on standard notched round bars and double-side U-notched flat plate specimens. In particular, our attention was focused on the fracture behavior of two specimens containing complex geometrical features subjected to pure-shear and tensile-shear local stress states. The common feature of these two notched specimens was that cracks were seen to initiate, within the material, away from the stress raisers, even though obvious stress concentrations existed at notch tip. The performed validation exercise confirms the accuracy and reliability of the linear-elastic TCD in estimating the fracture initiation position and static strength of standard notched round bars and double-side U-notched flat plate specimens. In the meantime, the linear-elastic method proposed in this paper can also be used as an effective approach to assess the fracture behavior of metallic components having complex geometry

    The cosmological origin of Higgs particles

    Get PDF
    A proposal of the cosmological origin of Higgs particles is given. We show, that the Higgs field could be created from the vacuum quantum conformal fluctuation of Anti-de Sitter space-time, the spontaneous breaking of vacuum symmetry, and the mass of Higgs particle are related to the cosmological constant of our universe,especially the theoretical estimated mass mH_{H} of Higgs particles is mH=−2μ2_{H}=\sqrt{-2\mu ^{2}} =∣Λ/π\sqrt{|\Lambda /\pi}.Comment: 7 pages,no figure

    Lack of clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    Full text link
    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057<z<0.0980.057<z<0.098 and cover approximately 1,300 square degrees over two long fields. Cross correlation is detected at a significance of 5.18σ5.18\sigma. The amplitude of the cross-power spectrum is low relative to the expected dark matter power spectrum, assuming a neutral hydrogen (HI) bias and mass density equal to measurements from the ALFALFA survey. The decrement is pronounced and statistically significant at small scales. At k∼1.5k\sim1.5 hMpc−1 h \mathrm{Mpc^{-1}}, the cross power spectrum is more than a factor of 6 lower than expected, with a significance of 14.8 σ14.8\,\sigma. This decrement indicates either a lack of clustering of neutral hydrogen (HI), a small correlation coefficient between optical galaxies and HI, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with HI on k∼1.5k\sim1.5 hMpc−1h \mathrm{Mpc^{-1}} scales, suggesting that HI is more associated with blue star-forming galaxies and tends to avoid red galaxies.Comment: 12 pages, 3 figures; fixed typo in meta-data title and paper author

    Heavy Fermion Screening Effects and Gauge Invariance

    Full text link
    We show that the naively expected large virtual heavy fermion effects in low energy processes may be screened if the process under consideration contains external gauge bosons constrained by gauge invariance. We illustrate this by a typical example of the process γγ→bbˉ\gamma\gamma\to b \bar{b}. Phenomenological implications are also briefly indicated.Comment: a miss-print fixed, 7 pages, LaTex, no figure

    Intense terahertz radiation from relativistic laser–plasma interactions

    Get PDF
    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser–plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources

    Holographic dark energy in a universe with spatial curvature and massive neutrinos: a full Markov Chain Monte Carlo exploration

    Full text link
    In this paper, we report the results of constraining the holographic dark energy model with spatial curvature and massive neutrinos, based on a Markov Chain Monte Carlo global fit technique. The cosmic observational data include the full WMAP 7-yr temperature and polarization data, the type Ia supernova data from Union2.1 sample, the baryon acoustic oscillation data from SDSS DR7 and WiggleZ Dark Energy Survey, and the latest measurements of H0H_0 from HST. To deal with the perturbations of dark energy, we adopt the parameterized post-Friedmann method. We find that, for the simplest holographic dark energy model without spatial curvature and massive neutrinos, the phenomenological parameter c<1c<1 at more than 4σ4\sigma confidence level. The inclusion of spatial curvature enlarges the error bars and leads to c<1c<1 only in about 2.5σ2.5\sigma range; in contrast, the inclusion of massive neutrinos does not have significant influence on cc. We also find that, for the holographic dark energy model with spatial curvature but without massive neutrinos, the 3σ3\sigma error bars of the current fractional curvature density Ωk0\Omega_{k0} are still in order of 10−210^{-2}; for the model with massive neutrinos but without spatial curvature, the 2σ2\sigma upper bound of the total mass of neutrinos is ∑mν<0.48\sum m_{\nu} < 0.48 eV. Moreover, there exists clear degeneracy between spatial curvature and massive neutrinos in the holographic dark energy model, which enlarges the upper bound of ∑mν\sum m_{\nu} by more than 2 times. In addition, we demonstrate that, making use of the full WMAP data can give better constraints on the holographic dark energy model, compared with the case using the WMAP ``distance priors''.Comment: 21 pages, 10 figures; major revision; new figures and discussions added; accepted by JCA
    • …
    corecore