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Abstract 

The development of tabletop intense terahertz (THz) radiation sources is significantly important for 

THz science and applications. This paper presents our measurements of intense THz radiation from 

relativistic laser-plasma interactions under different experimental conditions. Several THz generation 

mechanisms have been proposed and investigated, including coherent transition radiation emitted by 

fast electrons from the target rear surface, transient current radiation at the front of the target, and 

mode conversion from electron plasma waves to THz waves. The results indicate that relativistic laser 

plasma is a promising driver of intense THz radiation sources. 

 

Keywords: intense terahertz radiation, laser-plasma interactions, coherent transition radiation, 

transient current, mode conversion  
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1. Introduction 

Terahertz (THz) radiation has attracted much interest for its promising applications in many 

fields such as material [1], bio-medical [2], and communication [3], etc. During the last decades 

ultrafast intense lasers have been used to drive THz radiation [4,5,6,7,8]. Among them plasma-based 

THz sources have been paid much attention since plasma is free of optical damages [9]. THz radiation 

from laser-induced plasma filaments in air or in other low-density gases has been investigated 

extensively [10,11,12]. However, due to the ionization-induced laser defocusing in the filaments, the 

THz yield is found to be saturated with the pump laser intensity higher than 1015 W/cm2 [13]. 

 

Currently the focused intensity of ultraintense laser pulses can be well above 1018 W/cm2. To 

take the advantages of such a high laser intensity, a few groups have investigated the generation of 

stronger THz radiation in relativistic laser-plasma interactions. For example, Leemans et al. obtained 

THz radiation with energies of sub-ȝJ from intense laser-gas interactions [14]. Hamster et al. found 

that the THz radiation generated from solid targets was three orders of magnitude stronger than that 

from gas targets [15]. Sagisaka et al. [16] and Gao et al. [17] discussed the THz generation with an 

antenna model. Similarly, Tokita et al. [18] and Poyé et al. [19] investigated the THz radiation 

generated by the transient charge separation along the target [20]. Recently Gopal et al. obtained very 

strong THz radiation with energies of ~700 ȝJ from the rear of a foil target [21], which was attributed 

to the target normal sheath acceleration (TNSA) [22].  

 

The generation mechanisms of THz radiation from laser-solid interactions are complicated. To 

clarify them, we have systematically investigated the THz radiation from either the front or the rear 

of solid targets irradiated by relativistic femtosecond and picosecond laser pulses. With experimental 

observations and particle-in-cell (PIC) simulations, we have proposed and demonstrated three 

scenarios for different laser plasma conditions, which are highlighted in this paper. 

 

2. Coherent transition radiation in the THz regime 

High charge (nC-ȝC) MeV fast electrons can be generated during intense laser-solid interactions. 

For a foil target, fast electrons transport forward through the target and will induce transition radiation 
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when crossing the rear surface-vacuum boundary. Usually the bunch length of the fast electrons 

accelerated by a laser pulse in tens of femtosecond duration is of the order of ~10 ȝm, which is smaller 

than the wavelength of THz radiation. This will lead to the coherent transition radiation (CTR), in 

which the total radiation energy scales with the square of the electron number [23]. One can expect 

that the THz radiation energy will be high due to the high charge and short bunch duration of the fast 

electron beam as well as the steep foil-vacuum boundary.  

 

To verify this idea, we have carried out a relativistic laser-foil interaction experiment using the 

femtosecond laser system at the Laboratory for Laser Plasma, Shanghai Jiao Tong University [24]. A 

p-polarized laser pulse in 30 fs and 2 J was incident onto solid targets at an incidence angle of 54° 

with a peak intensity of ~1.5×1019 W/cm2. The laser prepulse contrast in the ns range is ~10-5. The 

THz radiation was collected at -75° with respect to the target rear normal, and measured by a 

pyroelectric detector. A set of low-pass or narrowband band-pass filters was used to measure the 

radiation spectra. Different types of targets were used in the experiment, including mass-limited metal 

targets with different sizes, polyethylene (PE)-metal double-layered, single PE and Cu targets.  

 

Figure 1(a) shows the frequency spectrum of THz radiation measured with 5 ȝm thick Cu foils. 

The radiation covers a bandwidth up to 30 THz. The theory of CTR predicts the radiation wavelength 

Ȝ to be larger than ez [25], where ez is the longitudinal length of electron bunches. In the present 

case, the bunch length of laser ponderomotive accelerated electrons is estimated to be ez~c∙ĲL~10 

ȝm, where c is the velocity of light and ĲL is the laser pulse duration. Therefore, the generated coherent 

radiation is estimated to be mainly within 30 THz, which agrees with the measurement. If the laser 

contrast was high enough, electrons would be mainly accelerated through vacuum heating with 

characteristic micro-bunching structures separated by the laser period [26]. Nevertheless, as long as 

the micro-bunches are shorter than the THz radiation wavelength, the transition radiation emitted by 

the micro-bunched electrons will remain coherent in the THz regime.  
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Figure 1. (a) Experimentally measured THz radiation spectrum at -75° from the rear side of 5 ȝm thick metal foils 

(From Liao et al 2016 [24]). (b) Comparison of the typical THz signals measured with different targets.  

 

Transition radiation depends critically on the dielectric property of medium boundary. Figure 

1(b) compares the typical THz signals measured with different targets, where the PE layer is 40 ȝm 

thick and the metal layer 5 ȝm thick, respectively. The laser pulse was focused on the front PE surface 

for the PE/PE-metal targets or the metal surface for the metal/metal-PE targets. The peak intensity 

ratio of THz radiation from different targets is PE: PE-metal: Metal: Metal-PE=1: 12: 39: 41. When 

a 5 ȝm thick metal layer is coated behind the PE layer, the THz radiation is dramatically enhanced by 

over 10 times. The relative dielectric constant of the PE at the THz regime is ~2.3, while that of the 

metal is much greater than 1 [27]. Stronger THz radiation with a metallic rear layer is a direct evidence 

for transition radiation. Moreover, the THz radiation from the metal and metal-PE targets is stronger 

than those from the PE and PE-metal targets. This is due to that the metal surface irradiated by laser 

pulses will lead to a higher laser absorption efficiency, fast electron number and electron temperature 

than the PE surface [28,29]. The slightly stronger THz radiation from the metal-PE targets than the 

single-layer metal targets could result from the two CTR sources at the metal-PE and PE-vacuum 

interfaces for the metal-PE targets [24]. 

 

Figure 2 shows the dependence of THz radiation from mass-limited targets on the target size. 

The THz intensity is increased dramatically when the target size increases from 200×200 ȝm2 to 1×1 

mm2, and then seems saturated as the target size increases from 1×1 mm2 to 2×2 mm2. This can be 

explained by the CTR model modified by diffraction radiation. Compared with the transition radiation 

from an infinite interface, the radiation from targets of a finite size will be reduced by the diffraction 

modification factor, D [25]. The curves in figure 2 show the theoretically calculated D as a function 
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of target sizes with different relativistic factors of fast electrons  and radiation wavelength . One 

can see the calculated curve with Ȝ=300 ȝm gives the closest agreement to the experimental results.  

 

 

Figure 2. Experimentally measured THz intensity at -75° (blue circles) and theoretically calculated diffraction 

modification factor D (curves) as a function of target sizes. (Reproduced with permission from [24]. Copyright 2016, 

American Physical Society.) 

 

When the fast electrons cross the target rear surface, a strong sheath field will be established due 

to the transient charge separation, leading to the well-known TNSA. The time-varying dipole-like 

charge structure formed during the TNSA has been proposed to emit THz radiation as an antenna 

[22]. According to this model, the THz radiation should be correlated with the ion acceleration. To 

check the CTR or the TNSA dipole-like radiation is dominant in our experiment, we have measured 

both the THz radiation and the ion acceleration with mass-limited targets. We find that both the 

number and maximum energy of ions are enhanced significantly with the decrease of target sizes [24]. 

The different dependence of the THz radiation and ion acceleration on target sizes indicates that the 

TNSA dipole-like radiation is not the dominant THz generation mechanism under our experimental 

conditions. 

 

The sheath field could ionize the target rear, forming a thin plasma layer. Nevertheless, 

according to the model of CTR [30], as long as the plasma scalelength at the target rear is much less 

than the formation length of CTR (in the order of ~100 ȝm for THz radiation), the rear plasma layer 

could still be approximately considered as a sharp boundary. Since the typical scale of the rear plasma 

is ~ several micrometers in a ps timescale during which the fast electrons cross the target, the overall 
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CTR process in the THz regime will not be affected much by the rear plasma. On the other hand, the 

sheath field at the target rear could pull some fast electrons back within a few ȝm distance. According 

to the theory of CTR, fast electrons have to propagate over a formation length to efficiently deliver 

the energy to electromagnetic radiation [31]. Hence, only those forward electrons escaping from the 

target surface (not those pulled back by the sheath field) contribute to the CTR observed.  

 

According to the experimental observation and the theoretical model of CTR, the total THz 

energy from the rear of metal foils is estimated to be ~400 ȝJ/pulse, comparable to the energy level 

of the conventional accelerator based THz sources [32]. The corresponding energy conversion 

efficiency from the laser pulse energy on targets to THz radiation is ~2×10-4.  

 

3. Target surface transient current 

Fast electrons generated in laser-solid interactions transport not only longitudinally but also 

laterally, forming strong transient currents along the target surface. The time-varying transient current 

in the low-density plasma region will emit electromagnetic radiation outward. The radiation spectrum 

mainly depends on the temporal evolution of transient currents. The fast electron current driven by 

femtosecond laser pulses usually has a timescale in the range from tens of femtoseconds to picosecond, 

and hence the radiation falls in the THz regime. 

 

Two-dimensional PIC simulations show that there usually exists two kinds of lateral transient 

currents with different characteristics near the target surface [33]. One is formed by the directional 

surface fast electron (SFE) beam due to the confinement of the quasistatic magnetic and electric fields 

(Current I) [34]. A steep plasma density gradient at the target surface and a large incidence angle are 

beneficial to the Current I. The other is the radial surface current formed by the lateral electron 

transport in low-density plasmas (Current II). A moderate plasma density scalelength and a small 

incidence angle are useful to enhance the Current II [33]. In the PIC simulations, strong lateral return 

currents are formed by “cold” background electrons which almost cancel out the fast electron currents 

in the high-density region. While in the low-density region, there exists a strong net, transient current 

without enough return currents. Given that the observable THz radiation is mainly generated from 

the low-density plasma region and the THz field generated in the high-density region cannot be 
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emitted out efficiently into vacuum, the effect of return currents is not significant for the THz radiation 

in the low-density region. 

 

Figure 3(a) shows the simulated temporal evolution of the energy spectra of the electrons emitted 

into vacuum within 20° with respect to the target surface (corresponding to the Current I formed by 

the SFE beam). Due to the effect of the surface quasistatic electric and magnetic fields, electrons at 

the surface would firstly be pulled in and reflected out of the target, drifting along the target surface. 

Then some electrons will be accelerated gradually and generate the THz radiation possibly during the 

prolonged push-reflection (oscillation) processes [35]. A part of those fast electrons with enough 

energies will escape from the target, forming the SFE beam observed in vacuum [34]. One can see 

the energy spectra of electrons in the SFE beam are still not stable at 1 ps under the present simulation 

parameters. The time-varying current lasts > 1ps, and the generated radiation will be with a pulse 

duration (FWHM) of about >0.5 ps and frequencies within 2 THz. Figure 3(b) shows the simulated 

temporal evolution of the energy spectra of electrons transporting laterally in underdense (density 

<1019 cm-3) plasmas (corresponding to the Current II). This part of relatively low-energy electrons is 

mainly accelerated by the laser transverse ponderomotive force in our present case. Seen from figure 

3(b), the electrons are accelerated immediately just when the laser is incident onto the target, and the 

acceleration is stopped when the laser pulse is reflected off the target at ~0.2 ps. Correspondingly the 

energy spectra of this part of electrons tend to be stable after ~0.2 ps, generating the radiation with a 

pulse duration (FWHM) of ~0.1 ps and frequencies of ~10 THz. Given the fact that the dimension of 

the lateral transport of fast electron currents is usually comparable to or even larger than the THz 

wavelength [36], the first-order electric-dipole radiation approximation is no longer valid [37]. Hence 

there will still be high-frequency THz radiation emitted despite that the Current II could be roughly 

symmetric spatially. This has been verified by the PIC simulations [38].  
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Figure 3. Temporal evolution of the energy spectra of (a) electrons emitted into vacuum within 20° with respect to 

the target surface and (b) electrons in the underdense plasma region obtained from PIC simulations. In the 

simulations, a laser pulse with a duration of 80 fs is incident onto a plasma slab at an incidence angle of 60°. The 

plasma density increases from 1018 cm-3 to 5×1021 cm-3 with a density scalelength of 0.1 ȝm. From Li et al 2016 

[33]. 

 

To demonstrate the THz radiation generated by the two kinds of target surface transient currents, 

we have performed a series of experiments [38,39,40,41] using different laser systems. Typically, an 

800 nm, 50-100 fs laser pulse was incident onto a 1 mm thick copper slab at an incidence angle of 

67.5°, 22.5° or 10°. The THz radiation was observed in different directions. The laser pulse energy, 

contrast and polarization were adjustable in the experiment. A set of THz low-pass filters and a wire-

grid THz polarizer were used to characterize the frequency spectra and polarization of THz radiation, 

respectively.  

 

Figure 4(a) and 4(b) shows the THz radiation detected at different observation angles (defined 

as the angle with respect to the front target normal)  and laser incidence angles ș as a function of 

THz frequency and laser contrast ratio, respectively. The THz radiation property is found to be closely 

dependent on  rather than ș. The THz radiation near the target surface ( ≥67.5°) is dominated by 

low-frequency (<3 THz) components regardless of the laser incidence angles, as shown with the blue 

lines in figure 4(a). The THz radiation at  =67.5° is nearly doubled when ș is varied from 22.5° to 

67.5°. Seen from figure 4(b), the THz radiation at  =67.5° is enhanced significantly by improving 

the laser contrast. Besides, it is found to be always mainly p-polarized regardless of the laser 

polarization. Interestingly, the THz radiation near the target normal ( ≤22.5°) shows much different 
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properties from the THz radiation at  ≥67.5°. As shown by the red lines in figure 4, the THz radiation 

at  =22.5° is dominated by high-frequency (>10 THz) components, and it is increased with the 

decrease of laser incidence angles or the increase of preplasma scalelengths. In addition, the 

polarization orientation of the THz radiation at  =22.5° is found to be roughly the same with the 

laser polarization, i.e., the THz radiation becomes mainly s-polarized when the pump laser is s-

polarized.  

 

 

Figure 4. Under different observation angles  and laser incidence angles ș, plot (a) shows the THz energy 

proportion in different frequency bands and plot (b) shows the THz intensity as a function of the laser contrast 

ratio in the ns range.  

 

The dependence of the THz radiation observed in different directions on the laser-plasma 

parameters can be explained by the two kinds of target surface transient currents. The low-frequency 

THz radiation near the target surface is mainly generated by the SFE current (Current I), while the 

high-frequency one near the target normal by the lateral transport electron current (Current II). In 

experiments we have also measured the spectra of scattered laser light. The THz radiation near the 

target surface is found to be correlated with the second harmonics of the laser pulse [40,42], while 

the radiation near the target normal shows positive correlation with three-halves harmonics [38]. 

Usually the second and three-halves harmonics are considered as the indication of resonance 

absorption and two-plasmon-decay instability, respectively. This suggests that the surface transient 

current could be driven by the two-plasmon-decay instability when there is a moderate preplasma 

[38]. 
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4. Mode conversion from electron plasma waves to THz radiation 

In the above surface current model the preplasma scalelength is relatively small. In contrast, 

when there is a large-scale preplasma presented in front of a solid target, electron plasma waves 

(EPWs) will be excited during the laser propagation in the plasma. It is well known that a laser 

electromagnetic wave can be converted into an electrostatic wave at the critical density through 

resonant absorption [ 43 ]. Early studies predicted that there is a reversal symmetry in the 

electromagnetic-electrostatic mode conversion [44], which means plasma waves can be converted 

into electromagnetic radiation in certain conditions. Since the amplitude of the converted 

electromagnetic field is proportional to that of the plasma wave, it is also known as linear mode 

conversion (LMC). Sheng et al. have proposed that laser wakefields can emit intense THz radiation 

around the plasma frequency mainly in the specular direction through LMC when the laser pulse is 

incident obliquely to an inhomogeneous plasma of a positive density gradient [45]. For example, at 

the plasma density of 1018 cm-3, the frequency of mode-converted radiation lies ~ 9 THz.  

 

To demonstrate the LMC mechanism, a large-scale underdense plasma is necessary to excite 

plasma waves efficiently. Almost all of the previously reported experiments on THz radiation from 

solid targets are pumped with femtosecond laser pulses. We have studied a different regime, where a 

relativistic picosecond laser pulse interacts with a large-scale inhomogeneous preplasma in front of 

solid targets [46]. The experiment was carried out using the COMET laser system at the Lawrence 

Livermore National Laboratory. A 1053 nm 0.5 ps laser pulse was focused onto a 1 mm thick copper 

target at an incidence angle of 62.5°. The peak irradiance was ~5×1017 W/cm2 for 1 J laser energy. To 

generate a controllable quasi-one-dimensional large-scale preplasma, a 1053 nm, 0.5 ps prepulse was 

incident onto the target with a focal diameter of ~100 ȝm in advance of the main laser pulse. The 

preplasma scalelength was adjusted by varying the energy or the timing of the prepulse, and measured 

by a Nomarski interferometer. The THz radiation was detected with a pyroelectric detector in the 

specular (62.5°) direction. 
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Figure 5. THz energy as a function of (a) laser energy and (b) preplasma scalelength L. From Liao et al 2015 [46]. 

 

Figure 5(a) shows the THz radiation as a function of the laser energy. The THz radiation 

increases nonlinearly as a power scaling with an exponent of ~3±0.5 as the laser energy is increased. 

No trend of saturation of the radiation is observed. Figure 5(b) shows the measured dependence of 

THz radiation on the preplasma scalelengths. One can see there is an optimal scalelength near 45 ȝm. 

Besides, spectral and polarization measurements show that the THz radiation is dominated by high-

frequency (>10 THz) components and behaves like a p-polarized pulse. 

 

 

Figure 6. Schematic diagram showing the generation of THz radiation via LMC in an inhomogeneous plasma. 

From Liao et al 2015 [46]. 

 

There are two ways to excite large-amplitude EPWs for a long laser pulse in a large-scale plasma, 

as shown in figure 6. One is stimulated Raman scattering (SRS), which occurs spontaneously during 

the laser propagation in a large-scale plasma [43]. The other is relativistic self-modulated laser 

wakefield excitation, which occurs as a result of relativistic self-modulation instability (SMI) [47]. In 
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inhomogeneous plasmas, the plasma waves excited by SRS and SMI could be partially converted into 

electromagnetic waves via mode conversion. Since the plasma density in front of solid targets is 

distributed over a very large range, the mode-converted THz radiation would be ultra-broadband with 

high frequency components. Our PIC simulations have demonstrated those processes, and reproduced 

the observed optimal plasma scalelength [46]. Based on the LMC model, the THz radiation energy 

should scale with the square of the laser intensity in the weakly relativistic approximation [45]. While 

for the relativistic laser regime investigated in the present experiment, the plasma wave amplitude 

will increase nonlinearly with the laser intensity. This will result in a power exponent higher than 2, 

which agrees with the measured exponent of ~3±0.5, as shown in figure 5(a).  

 

5. Summary 

Our recent studies of the THz radiation generated from relativistic laser-solid interactions have 

been reviewed. The THz radiation properties and the underlying generation mechanisms are found to 

be critically dependent on the laser-plasma conditions. The THz radiation from the rear of a foil target 

is attributed to the coherent transition radiation excited by the fast electrons crossing the target-

vacuum boundary in our experiments. The target surface transient current is responsible for the THz 

radiation from the front of a solid target with a relatively small preplasma. A plasma density 

scalelength less than several micrometers is necessary to enhance the low-frequency THz radiation 

generated by the SFE beam. While for the case where a laser pulse interacts with a large-scale plasma 

of a density scalelength of tens micrometers, electrostatic-electromagnetic mode conversion could 

play an important role in the THz generation. The understanding of those generation mechanisms will 

help to enhance our control of such laser-plasma-based THz sources. These sources with high peak 

power can be applied to the study of nonlinear interactions of high-field THz waves with matter.  
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