104 research outputs found

    Innovation and Optimization of the Blended Teaching Paradigm of the Open University: Based on the Perspective of Experiential Learning Theory

    Get PDF
    The scientific and advanced nature of the teaching paradigm of the Open University not only directly represents the overall appearance and actual level of teaching, but also essentially determines the quality of talent training in the university. Innovating and optimizing the blended teaching paradigm is an important way to improve the quality of university teaching, and it is an inevitable way for the Open University to complete the mission of high-quality development of lifelong education. This paper starts with the current situation and problems of the blended teaching paradigm of the Open University, and re-examines, innovates and optimizes the original blended teaching paradigm. With the goal of effectively improving the teaching quality of the Open University, and guided by the latest progress in teaching theory, it analyzes the basic logic and practical paths of the construction of the Open University’s blended teaching paradigm based on experiential learning theory

    Survival Measures and Interacting Intensity Model: with Applications in Guaranteed Debt Pricing

    Get PDF
    This paper studies survival measures in credit risk models. Survival measure, which was first introduced by Schonbucher [12] in the framework of defaultable LMM, has the advantage of eliminating default indicator variable directly from the expectation by absorbing it into Randon-Nikodym density process. Survival measure approach was further extended by Collin-Duresne[4] to avoid calculating a troublesome jump in IBPR reduced-form model. This paper considers survival measure in "HBPR" model, i.e. default time is characterized by Cox construction, and studies the relevant drift changes and martingale representations. This paper also takes advantage of survival measure to solve the looping default problem in interacting intensity model with stochastic intensities. Guaranteed debt is priced under this model, as an application of survival measure and interacting intensity model. Detailed numerical analysis is performed in this paper to study influence of stochastic pre-default intensities and contagion on value of a two firms' bilateral guaranteed debt portfolio.Survival Measure, Interacting Intensity Model, Measure Change, Guaranteed Debt, Mitigation and Contagion.

    Unilateral CVA for CDS in Contagion model: With volatilities and correlation of spread and interest

    Get PDF
    The price of financial derivative with unilateral counterparty credit risk can be expressed as the price of an otherwise risk-free derivative minus a credit value adjustment(CVA) component that can be seen as shorting a call option, which is exercised upon default of counterparty, on MtM of the derivative. Therefore, modeling volatility of MtM and default time of counterparty is key to quantification of counterparty risk. This paper models default times of counterparty and reference with a particular contagion model with stochastic intensities that is proposed by Bao et al. 2010. Stochastic interest rate is incorporated as well to account for positive correlation between spread and interest. Survival measure approach is adopted to calculate MtM of risk-free CDS and conditional survival probability of counterparty in defaultable environment. Semi-analytical solution for CVA is attained. Affine specification of intensities and interest rate concludes analytical expression for pre-default value of MtM. Numerical experiments at the last of this paper analyze the impact of contagion, volatility and correlation on CVA.Credit Value Adjustment, Contagion Model, Stochastic Intensities and Interest, Survival Measure, Affine Specification

    Some Weighted Norm Estimates for the Composition of the Homotopy and Green’s Operator

    Get PDF
    We establish the Ar(D)-weighted integral inequality for the composition of the Homotopy T and Green’s operator G on a bounded convex domain and also motivated it to the global domain by the Whitney cover. At the same time, we also obtain some (p,q)-type norm inequalities. Finally, as applications of above results, we obtain the upper bound for the Lp norms of T(G(u)) or (T(G(u)))B in terms of Lq norms of u or du

    Survival Measures and Interacting Intensity Model: with Applications in Guaranteed Debt Pricing

    Get PDF
    This paper studies survival measures in credit risk models. Survival measure, which was first introduced by Schonbucher [12] in the framework of defaultable LMM, has the advantage of eliminating default indicator variable directly from the expectation by absorbing it into Randon-Nikodym density process. Survival measure approach was further extended by Collin-Duresne[4] to avoid calculating a troublesome jump in IBPR reduced-form model. This paper considers survival measure in "HBPR" model, i.e. default time is characterized by Cox construction, and studies the relevant drift changes and martingale representations. This paper also takes advantage of survival measure to solve the looping default problem in interacting intensity model with stochastic intensities. Guaranteed debt is priced under this model, as an application of survival measure and interacting intensity model. Detailed numerical analysis is performed in this paper to study influence of stochastic pre-default intensities and contagion on value of a two firms' bilateral guaranteed debt portfolio

    Survival Measures and Interacting Intensity Model: with Applications in Guaranteed Debt Pricing

    Get PDF
    This paper studies survival measures in credit risk models. Survival measure, which was first introduced by Schonbucher [12] in the framework of defaultable LMM, has the advantage of eliminating default indicator variable directly from the expectation by absorbing it into Randon-Nikodym density process. Survival measure approach was further extended by Collin-Duresne[4] to avoid calculating a troublesome jump in IBPR reduced-form model. This paper considers survival measure in "HBPR" model, i.e. default time is characterized by Cox construction, and studies the relevant drift changes and martingale representations. This paper also takes advantage of survival measure to solve the looping default problem in interacting intensity model with stochastic intensities. Guaranteed debt is priced under this model, as an application of survival measure and interacting intensity model. Detailed numerical analysis is performed in this paper to study influence of stochastic pre-default intensities and contagion on value of a two firms' bilateral guaranteed debt portfolio

    Unilateral CVA for CDS in Contagion Model_with Volatilities and Correlation of Spread and Interest

    Get PDF
    The price of financial derivative with unilateral counterparty credit risk can be expressed as the price of an otherwise risk-free derivative minus a credit value adjustment(CVA) component that can be seen as shorting a call option, which is exercised upon default of counterparty, on MtM of the derivative. Therefore, modeling volatility of MtM and default time of counterparty is key to quantification of counterparty risk. This paper models default times of counterparty and reference with a particular contagion model with stochastic intensities that is proposed by Bao et al. 2010. Stochastic interest rate is incorporated as well to account for positive correlation between spread and interest. Survival measure approach is adopted to calculate MtM of risk-free CDS and conditional survival probability of counterparty in defaultable environment. Semi-analytical solution for CVA is attained. Affine specification of intensities and interest rate concludes analytical expression for pre-default value of MtM. Numerical experiments at the last of this paper analyze the impact of contagion, volatility and correlation on CVA

    Unilateral CVA for CDS in contagion model: with volatilities and correlation of spread and interest

    Get PDF
    The price of financial derivative with unilateral counterparty credit risk can be expressed as the price of an otherwise risk-free derivative minus a credit value adjustment(CVA) component that can be seen as shorting a call option, which is exercised upon default of counterparty, on MtM of the derivative. Therefore, modeling volatility of MtM and default time of counterparty is key to quantification of counterparty risk. This paper models default times of counterparty and reference with a particular contagion model with stochastic intensities that is proposed by Bao et al. 2010. Stochastic interest rate is incorporated as well to account for positive correlation between spread and interest. Survival measure approach is adopted to calculate MtM of risk-free CDS and conditional survival probability of counterparty in defaultable environment. Semi-analytical solution for CVA is attained. Affine specification of intensities and interest rate concludes analytical expression for pre-default value of MtM. Numerical experiments at the last of this paper analyze the impact of contagion, volatility and correlation on CVA
    corecore