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Abstract

The price of financial derivative with unilateral counterparty credit risk can be ex-
pressed as the price of an otherwise risk-free derivative minus a credit value adjust-
ment(CVA) component that can be seen as shorting a call option, which is exercised upon
default of counterparty, on MtM of the derivative. Therefore, modeling volatility of MtM
and default time of counterparty is key to quantification of counterparty risk. This paper
models default times of counterparty and reference with a particular contagion model with
stochastic intensities that is proposed by Bao et al. [1]. Stochastic interest rate is incor-
porated as well to account for positive correlation between spread and interest. Survival
measure approach is adopted to calculate MtM of risk-free CDS and conditional survival
probability of counterparty in defaultable environment. Semi-analytical solution for CVA
is attained. Affine specification of intensities and interest rate concludes analytical expres-
sion for pre-default value of MtM. Numerical experiments at the last of this paper analyze
the impact of contagion, volatility and correlation on CVA.
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1 Introduction

Counterparty credit risk arises from the fact that many financing transactions such as repos
and financial derivatives are traded over the counter. For example, Lehman Brothers had a
notional amount of $800 billion of OTC derivatives at the point of bankruptcy. After default
of highly rated Lehmann Brothers as well as occurrence of financial failure in many other large
financial institutions, such as Bear Stearns and AIG, counterparty risk has become a crucial issue
in connection with valuation and risk management of credit derivatives. This paper deals with
unilateral counterparty risk for a special class of derivatives–CDS–where only one counterparty
of the transaction is assumed to defaultable on CDS and the other being default-free. As usual,
the counterparty that calculates CVA is assumed to be default-free in this paper.

In contrast to unilateral counterparty risk, sometimes bilateral counterparty risk has to be
considered, especially after the 2007 financial crisis. As Jon Gregory asserts in the introduction
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of his new book Gregory [6], ”The ’too big to fail’ mentality that seemingly existed in the
market has been thoroughly discredited and the failure or financial instability of any institution
large or small should be regarded as plausible”, counterparty risk should be accounted for all
counterparties for any financial derivatives traded over the counter, no matter how highly they
are rated. However, we only deal with unilateral risk in this paper, while bilateral risk will be
studied in the sequel paper.

Among vast literature dealing with counterparty risk in general, we only mention here the
papers concerning valuation of CVA for CDS, especially two recent papers Brigo el al. [3] and
Crépey et al. [5], as well as a paper that is most relevant to this paper, Jarrow et al. [9]. On
the first stage of counterparty risk research, Huge et al. [7] propose a rating-based approach
to price CDS counterparty risk, while Hull el al. [8] put the problem in the framework of
static copula model. Thereafter, Jarrow et al. [9] propose a framework based on reduced-form
model to incorporate contagion as model input, called contagion model or interacting intensity
model, for the reason that contagion happens upon the default of one firm via increasing default
intensities of other forms. Blanchet-Scalliet et al. [2] develop a Merton-type structural approach
and derive closed form CVA for CDS.

Recently, Brigo et al. [3] propose a general framework to model unilateral counterparty risk,
where CVA can be expressed as a call option, exercised upon the default of counterparty, on
MtM of an otherwise default-free derivative with zero strike. Three key facts should be noted in
the general formula for unilateral CVA. First, how the dependence of default times of counter-
party and reference firm, if it’s not default free, is modeled is one major factor while calculating
CVA. Second, MtM of the risk free derivative, i.e. an equivalent derivative with the same cash-
flow except that no counterparty risk is accounted in the cashflow, is calculated with respect
to the whole information, including default information of both firms. This is complex because
reference’s default time is present in cashflow and both firms’ default information is included
in the whole market information. Third, MtM of risk free derivative is always in complex form,
even if explicit solution is available, not to mention calculating present value of MtM’s call
option that is payed upon default of counterparty. In Brigo’s specific model, inter-dependence
of default times are modeled via a static copula that couples unit exponential variables in Cox’s
construction of default times, while pre-intensities are assumed to be independent and interest
rate is set to be constant. This specification allows for semi-analytical expression for conditional
probability of reference’s default time given market information. Moreover, a default bucketing
technique is proposed in Brigo et al. [3] by assuming that the positive MtM is exercised on the
next payment day after counterparty defaults.

Alternatively, Crépey et al. [5] propose a Markov chain copula model with joint defaults
to account for wrong way risk. Although sounds unreasonable, simultaneous defaults can be
interpreted in the way that at the default time of counterparty, there is positive probability of
high spreads environment, in which case, the value of the CDS for a protection buyer is close (if
not equal) to the loss given default of the firm. Markovian property of marginal default process
in the framework of Markov chain copula model allows for explicit formula for MtM of risk-
free CDS in an environment with default information, as well as analytical solution for CVA.
However, one major drawback of Markov chain copula model is that it completely excludes
contagion from the model, because joint default process in a contagion model can never be
Markovian.

This paper models defaults of two firms by a specially designed contagion model with
stochastic intensities, which is first proposed in Bao et al. [1]. As CVA can be seen as a
call option on MtM of risk-free CDS, volatility of MtM is obviously a key model factor while
calculating CVA. Modeling volatility of MtM is represented in two parts in this paper, the
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volatility from diffusion of Brownian Motions in pre-intensities, and the possibility of contagion
from the other firm. In addition, stochastic interest rate is incorporated in our model, and posi-
tive correlation between spread and interest rate is modeled. Survival measure approach, which
is designed in Bao et al. [1], is adopted to calculate MtM of risk-free CDS and conditional distri-
bution of counterparty’s default time in defaultable environment, and semi-analytical solution
for CVA is attained. Early version of survival measure approach is referred to Collin-Dufresene
et al. [4] and Schönbucher [12]. Affine specification of intensities and interest rate concludes
analytical expression for pre-default value of MtM. Numerical results at the last of this paper
analyze the impact of contagion, volatility and correlation on CVA.

The remaining sections are organized as follows. The general framework of pricing unilateral
counterparty risk, i.e. calculating CVA, is reviewed in Section 2. A special contagion model
is proposed in Section 3, and some key quantities are calculated in this section. Section 4
gives the major result in this paper, i.e. unilateral CVA for CDS. Section 5 proposes an
affine specification of intensities and interest rate, and explicit formula for MtM’s pre-default
value is derived. Section 6 performs some numerical analysis and gives interpretation of model
parameters. Section 7 concludes this paper.

2 Credit Valuation Adjustment

We review the general framework of pricing unilateral counterparty risk for CDS in this
section, while the pricing formula is suitable for arbitrary OTC derivative. We adopt most
of the notations from literature, especially in Brigo et al. [3]. Default times of reference firm
and the counterparty are denoted as τ1 and τ2 respectively. Suppose we are in an economy
(Ω,G,G,Q), where G = {Gt}t∈R+ is the whole market information and Q is martingale measure.
Suppose market information Gt is decomposed into two parts Gt = Ft ∨ Ht, with the RCLL
and complete subfiltration Ft representing all default free information available in the market,
and the RCLL and complete subfiltration Ht = H1

t ∨H2
t representing default information, with

Hi
t = σ

({
1{τi≤s}

}
s≤t

)
, i = 1, 2.

We denote the maturity of CDS as T . Suppose recovery rates of the two firms are R1

and R2, and loss given default of them are L1 = 1 − R1 and L2 = 1 − R2 respectively. For
the purpose of convenience, we call a CDS subject to counterparty risk ”risky CDS” and an
otherwise equivalent CDS but having no counterparty risk ”risk-free CDS”. Denote ΠD(t, T )
as the sum of all cashflow of risky CDS between t and T , all terms discounted by the stochastic
discount factor D(t, s) = exp

{− ∫ s

t
rudu

}
, where rt is stochastic short interest rate. Π(t, T )

is defined analogously for the risk-free CDS. If τ2 > T , the risky CDS investor will realize
all cashflow promised in risk-free CDS. If t < τ2 ≤ T , the investor could only realize the
cashflow until default time τ2, while the remaining cashflow should be marked to market and
the MtM value would be settled. Note that the remaining cashflow is part of the risk-free CDS,
while it is subject to the environment with default information of both firms. Thus we have
MtM(t, T ) = EQ [Π(t, T )| Gt], and

ΠD(t, T ) = 1{τ2>T}Π(t, T ) +

1{t<τ26T}
[
Π(t, τ2) + D (t, τ2)

(
R2 (MtM(τ2, T ))+ − (MtM(τ2, T ))−

)]
(2.1)

The above expression implies that if there is no early default of counterparty, all cashflow
Π(t, T ) will be realized until maturity T . If the counterparty does default before maturity, all
cashflow before τ2 will be realized until τ2 and the MtM value of remaining cashflow will be
settled at τ2. If MtM(τ2, T ) > 0, only recovery value R2MtM(τ2, T ) will be payed to investor.
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If MtM(τ2, T ) < 0, the investor could not just walk away from the transaction, however, and
should pay the entire amount −MtM(τ2, T ) to counterparty.

The following proposition summarizes the general pricing formula for unilateral counterparty
risk, where ΠD(t, T ) and Π(t, T ) are supposed to be risky and risk-free discounted cashflow of
arbitrary OTC derivatives, not just CDS.

Proposition 1. At valuation time t, and on {τ2 > t}, the price of risky cashflow subject to
counterparty risk is given by

1{τ2>t}E
[
ΠD(t, T )

∣∣Gt

]
= 1{τ2>t}E [Π(t, T )| Gt]− 1{τ2>t}CV A(t, T ) (2.2)

where CV A(t, T ) is expressed as

CV A(t, T ) = 1{τ2>t}CV A(t, T ) = E
[
1{t<τ26T}L2 ·D(t, τ2) (MtM(τ2, T ))+

∣∣∣Gt

]
(2.3)

.

Proof: Note that Π(t, T ) = Π(t, τ2) + D(t, τ2)Π(τ2, T ), therefore
1{τ2>t}E

[
ΠD(t, T )

∣∣Gt

]
= E

[
1{τ2>t}Π(t, T )− 1{t<τ26T}D(t, τ2)Π(τ2, T )

∣∣Gt

]

+E
[
1{t<τ26T}D(t, τ2)

[
R2 · (MtM(τ2, T ))+ − (MtM(τ2, T ))−

]∣∣∣Gt

]

= E
[
1{τ2>t}Π(t, T )− 1{t<τ26T}D(t, τ2)E (Π(τ2, T )| Gτ2)

∣∣Gt

]

+E
[
1{t<τ26T}D(t, τ2)

[
R2 · (MtM(τ2, T ))+ − (MtM(τ2, T ))−

]∣∣∣Gt

]

= E
[
1{τ2>t}Π(t, T )− 1{t<τ26T}D(t, τ2)MtM(τ2, T )

∣∣Gt

]

+E
[
1{t<τ26T}D(t, τ2)

[
R2 · (MtM(τ2, T ))+ − (MtM(τ2, T ))−

]∣∣∣Gt

]

= 1{τ2>t}E [Π(t, T )| Gt]− E
[
1{t<τ26T}L2 ·D(t, τ2) (MtM(τ2, T ))+

∣∣∣Gt

]

where the second equality holds by using ”tower property” of conditional expectation, and
the fact that 1{t<τ26T}D(t, τ2) is Gτ2 measurable.

Equations (2.2) and (2.3) show that arbitrage free price of an OTC derivative subject to
unilateral counterparty risk can be expressed as arbitrage price of an equivalent risk-free deriva-
tive minus the credit valuating adjustment component which can be seen as a call option on
MtM of risk-free derivative with strike price 0 and delivery time τ2. Specifically, this paper
considers valuation of CVA at time 0 for CDS. Thus the objective of this paper is calculating
the following quatility

CV A(0, T ) = E
[
1{τ26T}L2 ·D(0, τ2)

(
MtMCDS

Seller(τ2, T )
)+

]
(2.4)

where MtMCDS
Seller(t, T ) is mark-to-market value of CDS in the view of CDS seller with respect

to whole market information Gt, i.e.
MtMCDS

Seller (t, T ) = EQ
[
ΠCDS

Seller (t, T )
∣∣Gt

]

= EQ
[

S ·
∫ T

t

D (t, s) 1{τ1>s}ds− L1 ·
∫ T

t

D (t, s) dH1
s

∣∣∣∣∣Gt

]
(2.5)

with ΠCDS
Seller (t, T ) discounted cashflow for risk-free CDS seller. Equations (2.4) and (2.5)

show that the key issue in CVA valuation is modeling default dependence between τ1 and τ2,
which is the main subject of next section.
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3 Modeling Default Dependence

As indicated at the last of previous section and concluded from equations (2.4-2.5), the major
task for valuating CVA is to model default dependence between τ1 and τ2, and furthermore,
deriving MtM for risk-free CDS in the environment with default information of both firms based
on the dependence structure. This paper models the default dependence by a special contagion
model proposed in Bao et al. [1] with stochastic intensities. τ1 and τ2 are constructed as

τi = inf
{

t > 0
∣∣∣∣
∫ t

0

λi
sds ≥ Ei

}
, i = 1, 2 (3.6)

where λi
t’s are specified as{

λ1
t = α1

t + β1
t · 1{τ26t}

λ2
t = α2

t + β2
t · 1{τ16t}

, with

{
β1

t = η2 · α2
t

β2
t = η1 · α1

t

(3.7)

with αi
t’s and βi

t’s being F-adapted non-negative processes. Ei’s are mutually independent
unit mean exponential variables that are independent from F. Therefore, τi’s can be seen as
constructed in a HBPR framework (see Bao et al. [1] for detailed discussion) with λi

t’s being
G−i = F ∨ Hj,j 6=i-adapted stochastic hazard processes, and thus M i

t = Hi
t −

∫ t∧τi

0
λi

sds being
basic G -martingale for default time τi.

Contagion model (3.6-3.7) effectively incorporates volatility into MtM of risk-free CDS in two
ways, diffusion of pre-default intensities αi

t’s and contagion effect from defaulted firm to survival
firm. For example, before default of counterparty, the intensity of reference firm is α1

t , which
is an F-adapted diffusion, and the volatility of MtM is mainly attributed to volatilities of α1

t

and α2
t in this case. Once the counterparty defaults, the default risk spreads from counterparty

to reference firm immediately through a sudden jump of reference’s intensity in the amount
proportional to counterparty’s pre-default intensity α2

t . Unlike traditional design of jump that
is proportional to a firm’s own pre-default intensity, such as Leung et al. [11], we assume jump
of one firm’s intensity is proportional to the other firm’s pre-default intensity. This implies that
contagion from one firm to another is represented not only by a sudden jump in its intensity,
but also by transferring defaulted firm’s pre-default intensity to the survival firm. The major
advantage of this design is that explicit formulas for marginal survival probability of τ2 and
joint survival probability of τ1 and τ2 conditional on default-free information are available.

Solving a contagion model such as (3.6-3.7) faces an obstacle of looping default problem.
Three alternative approaches are proposed in literature, i.e. total hazard approach in Yu [14]
and Yu [15], Markov chain approach in Leung et al. [11] and Walker [13], survival measure
approach in Leung et al. [10]. This paper adopts survival measure approach for its convenience
in dealing with contagion model with stochastic intensities, especially the case in presence of
stochastic interest rate. The following lemma exhibits the definition and properties of survival
measures used hereafter, whose proof is referred to Bao et al. [1].

Lemma 1. For contagion model with stochastic intensities (3.6-3.7), define the following two
survival measures

dQi

dQ

∣∣∣∣
Gt

= 1{τi>t} · exp
{∫ t

0

λi
sds

}
, ∀t ≤ T, i = 1, 2 (3.8)

then stochastic hazard processes λ1
t and λ2

t can be significantly simplified under the two survival
measures to become
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{
λ2

t = α2
t ∼ Q1 − a.s.

λ1
t = α1

t ∼ Q2 − a.s.
and

{
λ2

t = 0 ∼ Q2 − a.s.

λ1
t = 0 ∼ Q1 − a.s.

(3.9)

Moreover, if αk
t ’s and βk

t ’s are assumed to be F-adapted non-negative Itô diffusion processes,
and F is assumed to be expanded by Brownian motion Wt, then distributions of αk

t ’s and βk
t ’s

under (Qi,F), i = 1, 2, are the same as under (Q,F). .

Equation (3.9) shows the major advantage of survival measure approach. Intensities of the
two default times are significantly simplified because default indicators are eliminated. However,
using this measure change needs a survival indicator in the cashflow under original martingale
measure Q due to Bayesian formula. The following lemma displays all the quantities that will
be used in the sequel sections. Specifically, we calculate present value of a survival claim and
a recovery value, which are basic building blocks for the two legs of a CDS, on the event of
{τ1 > t, τ2 ≤ t}.
Lemma 2. Under the contagion model with stochastic intensities (3.6-3.7), given a stochastic
interest rate rt, we have

(1).On the event of {τ1 > t, τ2 6 t}, present value of general survival claim 1{τ1>T} · ZT ,
with ZT ∈ FT , calculated with respect to market information Gt can be expressed as

1{τ1>t,τ26t} · EQ
[
D (t, T ) 1{τ1>T} · ZT

∣∣Gt

]

= 1{τ1>t,τ26t} · EQ
[

exp

{
−

∫ T

t

(
α1

s + β1
s + rs

)
ds

}
· ZT

∣∣∣∣∣Ft

]
(3.10)

Particularly, present value of unit survival claim 1{τ1>T} is

1{τ1>t,τ26t} · EQ
[
D (t, T ) 1{τ1>T}

∣∣Gt

]

= 1{τ1>t,τ26t} · EQ
[

exp

{
−

∫ T

t

(
α1

s + β1
s + rs

)
ds

}∣∣∣∣∣Ft

]

≡ 1{τ1>t,τ26t} · P̃ (t, T ) (3.11)
(2).On the event of {τ1 > t, τ2 6 t}, present value of unit recovery value 1{t<τ1≤T}, paid at

default time τ1, with respect to market information Gt can be represented as

1{τ1>t,τ26t} · EQ
[∫ T

t

D (t, s) dH1
s

∣∣∣∣∣Gt

]

= 1{τ1>t,τ26t} ·
∫ T

t

EQ
[
exp

{
−

∫ s

t

(
α1

u + β1
u + ru

)
du

} (
α1

s + β1
s

)∣∣∣∣Ft

]
ds

≡ 1{τ1>t,τ26t} ·
∫ T

t

P̄ (t, s)ds (3.12)

(3).Survival probability of τ2 conditional on default-free information FT can be expressed as

Q (τ2 > s| FT ) =
1

1− η1

(
exp

{
−

∫ s

0

[
α2

u + β2
u

]
du

}
− η1 exp

{
−

∫ s

0

[
α1

u + α2
u

]
du

})
(3.13)

for η1 6= 1 and ∀s ∈ (0, T ]. When η1 = 1, Q (τ2 > s| FT ) is defined as limit of expression
(3.13) as η1 → 1, i.e.

Q (τ2 > s| FT ) =
∫ s

0

α1
udu · exp

{
−

∫ s

0

[
α2

u + β2
u

]
du

}
+ exp

{
−

∫ s

0

[
α1

u + α2
u

]
du

}
(3.14)

(4).Joint probability Q {τ1 > T, S < τ2 ≤ T | FT } of the two firms conditional on default-free
information FT can be expressed as
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Q {τ1 > T, S < τ2 6 T | FT }

=





1
1− η2

exp

{
−

∫ T

0

[
α1

s + α2
s

]
ds

}[
exp

{∫ T

S

(1− η2) α2
udu

}
− 1

]
, η2 6= 1, η2 > 0

exp

{
−

∫ T

0

[
α1

s + α2
s

]
ds

}[∫ T

S

α2
udu + 1

]
, η2 = 1

≈ (T − S) exp

{
−

∫ T

0

[
α1

s + α2
s

]
ds

}
α2

T ,∀ η2 > 0. (3.15)

when T − S is small enough. .

Proof: (1). To derive pricing formula for general survival claim 1{τ1>T} ·ZT in contagion model
(3.6-3.7), we change measure from Q to Q1. The Bayesian formula for absolutely continuous
measure change is referred to Appendix A in Bao et al. [1]. For notational convenience, we
misuse Gt in case Ḡ1

t or Ḡ2
t should be used without changing the results. Ḡi’s are the natural

filtration expanded by G and the null sets under survival measures Qi’s. Therefore,
1{τ1>t,τ26t} · EQ

[
D (t, T ) 1{τ1>T} · ZT

∣∣Gt

]

= 1{τ1>t,τ26t} · EQ1

[
D (t, T ) exp

{
−

∫ T

t

(
α1

s + β1
s · 1{τ26s}

)
ds

}
· ZT

∣∣∣∣∣Gt

]

= 1{τ1>t,τ26t} · EQ1

[
exp

{
−

∫ T

t

(
α1

s + β1
s + rs

)
ds

}
· ZT

∣∣∣∣∣Gt

]

= 1{τ1>t,τ26t} · EQ1

[
exp

{
−

∫ T

t

(
α1

s + β1
s + rs

)
ds

}
· ZT

∣∣∣∣∣Gt, τ1 > t, τ2 6 t

]

= 1{τ1>t,τ26t} · EQ1

[
exp

{
−

∫ T

t

(
α1

s + β1
s + rs

)
ds

}
· ZT

∣∣∣∣∣Ft, τ1 > t, τ2 6 t

]

= 1{τ1>t,τ26t} ·
EQ1

[
1{τ1>t,τ26t} · exp

{
− ∫ T

t

(
α1

s + β1
s + rs

)
ds

}
· ZT

∣∣∣Ft

]

Q1 [τ1 > t, τ2 6 t| Ft]

= 1{τ1>t,τ26t} ·
EQ1

[
EQ1

[
1{τ26t}

∣∣FT

] · exp
{
− ∫ T

t

(
α1

s + β1
s + rs

)
ds

}
· ZT

∣∣∣Ft

]

Q1 [τ2 6 t| Ft]

= 1{τ1>t,τ26t} · EQ1

[
exp

{
−

∫ T

t

(
α1

s + β1
s + rs

)
ds

}
· ZT

∣∣∣∣∣Ft

]

= 1{τ1>t,τ26t} · EQ
[

exp

{
−

∫ T

t

(
α1

s + β1
s + rs

)
ds

}
· ZT

∣∣∣∣∣Ft

]

where the second last equality holds for the reason that τ2 has intensity α2
t under survival

measure Q1, and Q1 [τ2 6 t| Ft] = Q1 [τ2 6 t| FT ] = exp
{
− ∫ t

0
α2

sds
}

, which is Ft-measurable.

The last equality holds because distributions of αi
t, βi

t and rt remain the same when changing
measures from Q to Q1.

(2).As λ1
t is intensity of τ1 under Q in the HBPR framework, M1

t = H1
t −

∫ t

0
1{τ1>s} · λ1

sds
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is (G,Q)-martingale. Therefore,

1{τ1>t,τ26t} · EQ
[∫ T

t

D (t, s) dH1
s

∣∣∣∣∣Gt

]

= 1{τ1>t,τ26t} · EQ
[∫ T

t

D (t, s)
(
dH1

s − 1{τ1>s}λ1
sds

)
+

∫ T

t

D (t, s) 1{τ1>s}λ1
sds

∣∣∣∣∣Gt

]

= 1{τ1>t,τ26t} · EQ
[∫ T

t

D (t, s) 1{τ1>s}λ1
sds

∣∣∣∣∣Gt

]

= 1{τ1>t,τ26t} ·
∫ T

t

EQ
[
D (t, s) 1{τ1>s}

(
α1

s + β1
s

)∣∣Gt

]
ds

= 1{τ1>t,τ26t} ·
∫ T

t

EQ
[
exp

{
−

∫ s

t

(
α1

u + β1
u + ru

)
du

} (
α1

s + β1
s

)∣∣∣∣Ft

]
ds

where the second equality holds because of martingale property of M1
t . The last equality is

direct application of formula (3.10).
(3).To calculate conditional probability of τ2, we decompose the survival event {τ2 > s}

into two parts, {τ2 > s, τ1 > s} and {τ2 > s, τ1 ≤ s}. Changing measure from Q to Q2, then
∀s ∈ (0, T ] and ZT ∈ FT , we get

EQ
{
1{τ2>s,τ1>s} · ZT

}
= EQ2

[
1{τ1>s} exp

{
−

∫ s

0

λ2
udu

}
· ZT

]

= EQ2

[
EQ2

(
1{τ1>s}

∣∣FT

)
exp

{
−

∫ s

0

α2
udu

}
· ZT

]

= EQ
[
exp

{
−

∫ s

0

[
α1

u + α2
u

]
du

}
· ZT

]
(3.16)

where the last equality holds for the reason that τ1 has default intensity α1
t under survival

measure Q2 and distributions of αi
t’s remain the same when changing measures from Q to Q2.

Similarly, ∀s ∈ (0, T ], η1 6= 1 and ZT ∈ FT , changing measure from Q to Q2, we get

EQ
{
1{τ2>s,τ16s} · ZT

}

= EQ2

[
1{τ16s} exp

{
−

∫ s

0

[
α2

u + β2
u · 1{τ16u}

]
du

}
· ZT

]

= EQ2

[
exp

{
−

∫ s

0

α2
udu

}
EQ2

(
1{τ16s} exp

{
−

∫ s

τ1

β2
udu

}∣∣∣∣FT

)
· ZT

]

= EQ2

[
exp

{
−

∫ s

0

α2
udu

} ∫ s

0

exp
{
−

∫ s

v

β2
udu

}
α1

v exp
{
−

∫ v

0

α1
udu

}
dv · ZT

]

= EQ2

[
exp

{
−

∫ s

0

[
α1

u + α2
u

]
du

} ∫ s

0

exp
{∫ s

v

[1− η1]α1
udu

}
α1

vdv · ZT

]

=
1

1− η1
EQ2

[
exp

{
−

∫ s

0

[
α1

u + α2
u

]
du

}(
exp

{
(1− η1)

∫ s

0

α1
udu

}
− 1

)
· ZT

]

=
1

1− η1
EQ

[(
exp

{
−

∫ s

0

[
α2

u + β2
u

]
du

}
− exp

{
−

∫ s

0

[
α1

u + α2
u

]
du

})
· ZT

]
(3.17)

where the third equality holds for the reason that τ1 has default intensity α1
t under survival

measure Q2. The fourth equality is direct consequence of construction of β2
t as proportion of
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α1
t , which allows explicit formula for the integral that is solved in the fifth equality.

Put equations (3.16) and (3.17) together, we get
EQ

{
1{τ2>s} · ZT

}

=
1

1− η1
EQ

[(
exp

{
−

∫ s

0

[
α2

u + β2
u

]
du

}
− η1 exp

{
−

∫ s

0

[
α1

u + α2
u

]
du

})
· ZT

]
(3.18)

for η1 6= 1 and ∀s ∈ (0, T ] and ∀ZT ∈ FT .
Meanwhile, it is obvious that the following equation holds ∀s ∈ (0, T ] and ∀ZT ∈ FT ,

EQ
{
1{τ2>s} · ZT

}
= EQ

[
EQ

(
1{τ2>s}

∣∣FT

) · ZT

]
(3.19)

Consequently, one can easily get formula (3.13) for η1 6= 1 by comparing equations (3.18)
and (3.19).

When η1 = 1, Q (τ2 > s| FT ) is defined as limit of expression (3.13) as η1 → 1, which can
easily attained through L’Hospital’s Rule.

(4).First, we calculate joint survival probability Q {τ1 > T, τ2 > S| FT } for S < T . Change
measure from Q to Q1, then for any ZT ∈ FT we get

EQ
{
1{τ1>T,τ2>S} · ZT

}
= EQ1

[
1{τ2>S} exp

{
−

∫ T

0

λ1
sds

}
· ZT

]

= EQ1

[
1{τ2>S} exp

{
−

∫ T

0

α1
sds

}
exp

{
−

∫ T

S

β1
s1{τ26s}ds

}
· ZT

]

= EQ1

[
EQ1

[
1{τ2>S} exp

{
−

∫ T

S

β1
s1{τ26s}ds

}∣∣∣∣∣FT

]
exp

{
−

∫ T

0

α1
sds

}
· ZT

]

=
1

1− η2
EQ1

[
exp

{
−

∫ T

0

[
α1

s + α2
s

]
ds

}[
exp

{
(1− η2)

∫ T

S

α2
udu

}
− η2

]
· ZT

]
(3.20)

for η2 6= 1. Meanwhile, it is obvious that the following equation holds for any ZT ∈ FT ,

EQ
{
1{τ1>T,τ2>S} · ZT

}
= EQ {Q {τ1 > T, τ2 > S| FT } · ZT } (3.21)

Finally, we get
Q {τ1 > T, τ2 > S| FT }

=
1

1− η2
exp

{
−

∫ T

0

[
α1

s + α2
s

]
ds

}[
exp

{∫ T

S

(1− η2)α2
udu

}
− η2

]
(3.22)

for η2 6= 1. When η2 = 1, Q {τ1 > T, τ2 > S| FT } is defined as limit of expression (3.22) as
η2 → 1, which can easily be attained by L’Hospital’s Rule

Q {τ1 > T, τ2 > S| FT } = exp

{
−

∫ T

0

[
α1

s + α2
s

]
ds

}[∫ T

S

α2
udu + 1

]
(3.23)

Therefore, joint survival probability Q {τ1 > T, τ2 > T | FT } can be expressed as follows

Q {τ1 > T, τ2 > T | FT } = exp

{
−

∫ T

0

[
α1

s + α2
s

]
ds

}
,∀η2 > 0 (3.24)

Consequently, the first equality in formula (3.15) can be concluded from equations (3.22-
3.24), and the approximation holds when T − S is small enough.
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4 Unilateral CVA for Risky CDS

This section uses the explicit and semi-explicit formulas in Lemma 2 to derive a semi-
analytical solution for unilateral CVA for risky CDS at time 0. Equation (2.4) implies that we
have to discount positive MtM from time τ2 to present. Therefore, all we care about is MtM
value of the short CDS at default time τ2 of counterparty, not before τ2. Thus we have to
compute MtMCDS

Seller (t, T ) on the event {τ1 > t, τ2 6 t}.
Theorem 1. Under the contagion model with stochastic intensities (3.6-3.7), given a stochastic
interest rate rt, mark-to-market value of a short CDS at time t with market spread S is explicitly
expressed as

1{τ1>t,τ26t}MtMCDS
Seller (t, T ) = 1{τ1>t,τ26t} ·

{∫ T

t

[
S · P̃ (t, s)− L1 · P̄ (t, s)

]
ds

}

≡ 1{τ1>t,τ26t} ·MtM (t, T ) (4.25)

on event {τ1 > t, τ2 6 t}. P̃ (t, s) and P̄ (t, s) are defined in Lemma 2, and explicit expres-
sions of them will be available if αi

t’s and rt are set to be affine processes. MtM (t, T ) is called
pre-default value of MtMCDS

Seller (t, T ) which is Ft-adapted.
On event {τ1 ≤ t}, we have

1{τ1≤t}MtMCDS
Seller (t, T ) = 1{τ1≤t}E

[
ΠCDS

Seller (t, T ) |Gt

]
= 0 (4.26)

Proof. On the event {τ1 > t, τ2 6 t}, explicit formulaes for unit survival claim and unit
recovery value are displayed in Lemma 2, thus

1{τ1>t,τ26t}MtMCDS
Seller (t, T )

= 1{τ1>t,τ26t}EQ
[

S ·
∫ T

t

D (t, s) 1{τ1>s}ds− L1 ·
∫ T

t

D (t, s) dH1
s

∣∣∣∣∣Gt

]

= 1{τ1>t,τ26t}S ·
∫ T

t

EQ
[
exp

{
−

∫ s

t

(
α1

u + β1
u + ru

)
du

}∣∣∣∣Ft

]
ds

−1{τ1>t,τ26t} ÃL1 ·
∫ T

t

EQ
[
exp

{
−

∫ s

t

(
α1

u + β1
u + ru

)
du

}
· (α1

s + β1
s

)∣∣∣∣Ft

]
ds

= 1{τ1>t,τ26t} ·
{∫ T

t

[
S · P̃ (t, s)− L1 · P̄ (t, s)

]
ds

}

On the event {τ1 ≤ t}, cashflow of CDS has already been truncated thus formula (4.26) is
obvious.

Equation (4.26) implies that MtMCDS
Seller (t, T ) concentrates all quality on the event {τ1 > t}.

Thus we have

MtMCDS
Seller (t, T ) = 1{τ1>t,τ26t}MtMCDS

Seller (t, T ) + 1{τ1>t,τ2>t}MtMCDS
Seller (t, T )

Consequently, MtM value of the CDS short position upon default of counterparty has the
following expression

MtMCDS
Seller (τ2, T ) = 1{τ1>τ2,τ26τ2} ·MtMCDS

Seller (τ2, T )
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= 1{τ1>τ2} ·MtM (τ2, T ) (4.27)
Put this expression into equation (2.4), we get

Theorem 2. Under the contagion model with stochastic intensities (3.6-3.7), given a stochastic
interest rate rt, unilateral credit valuation adjustment of a short CDS at time 0 with market
spread S is semi-explicitly expressed as

CV A(0, T ) ≈ L2E
Q




N∑

j=1

∆Tjexp

{
−

∫ Tj

0

[
α1

s + α2
s + rs

]
ds

}
α2

Tj

(
MtM (Tj , T )

)+


 (4.28)

where Tj , j = 1, ..., N are discrete payment days of CDS, with TN = T and ∆Tj = Tj−Tj−1.
.

Proof: Put equation (4.27) into equation (2.4), we get

CV A(0, T ) = L2 · EQ
[
1{τ26T}D(0, τ2)

(
MtMCDS

Seller(τ2, T )
)+

]

= L2 · EQ
[
1{τ26T}D(0, τ2)1{τ1>τ2}

(
MtM (τ2, T )

)+
]

= L2 · EQ



N∑

j=1

1{Tj−1<τ26Tj}D(0, τ2)1{τ1>τ2}
(
MtM (τ2, T )

)+


 (4.29)

Although joint distribution of τ1 and τ2, conditional on FT if necessary, is available in our
contagion model with stochastic intensities, see Bao et al. [1] for details, the expectation in the
above equation could not be solved analytically even if affine factors are supposed to assure
MtM (τ2, T ) is in explicit form. Therefore, we adopt the ”default bucketing” technique used in
Brigo et al. [3] to defer defaultable payment

(
MtMCDS

Seller(τ2, T )
)+ in the interval Tj−1 < τ2 ≤ Tj

to the next payment date Tj . Consequently, we get

CV A(0, T ) ≈ L2 · EQ



N∑

j=1

1{Tj−1<τ26Tj} ·D(0, Tj)
(
MtMCDS

Seller(Tj , T )
)+




= L2 · EQ



N∑

j=1

1{Tj−1<τ26Tj} ·D(0, Tj)1{τ1>Tj}
(
MtM (Tj , T )

)+




= L2 · EQ



N∑

j=1

Q
(
τ1 > Tj , Tj−1 < τ2 ≤ Tj | FTj

) ·D(0, Tj)
(
MtM (Tj , T )

)+




≈ L2 · EQ



N∑

j=1

∆Tjexp

{
−

∫ Tj

0

[
α1

s + α2
s

]
ds

}
α2

Tj
·D(0, Tj)

(
MtM (Tj , T )

)+




= L2 · EQ



N∑

j=1

∆Tjexp

{
−

∫ Tj

0

[
α1

s + α2
s + rs

]
ds

}
α2

Tj
· (MtM (Tj , T )

)+


(4.30)

where the second approximation holds for the reason that equation (3.15) is used to simplify
the expression.

Formula (4.28) gives a semi-analytical solution of CVA for a CDS short position. Usually,
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this equation is not in closed form even if αi
t’s and rt are affine specified and MtM (t, T ) is

affine or exponential affine function of factors. Therefore, Monte Carlo simulation is necessary
to implement this formula, just as what Brigo and Crépey did in their papers. The most
important procedure in this implementation is simulating pathes of αi

t’s and rt. The procedure
will be clear once dynamics of αi

t’s and rt are specified, especially if they are affine specified.
The impact of L2 on CVA is obvious in formula (4.28). However, the impact of pre-default

intensity volatility, interest rate and contagion is somehow implicit. Section 6 will perform some
numerical test to analyze influence of contagion, volatility and correlation on CVA.

5 Affine Specification of Intensities and Interest Rate

To account for volatilities of pre-default intensities αi
t’s, we specify them to follow mutually

independent CIR processes, that is α1
t = xt and α2

t = zt, where dynamics of the two CIR factors
are expressed as

{
dxt = kx [θx − xt] dt + σx

√
xtdW x

t

dzt = kz [θz − zt] dt + σz
√

ztdW z
t

, with dW x
t ⊥dW z

t (5.31)

under martingale measure Q. Parameters κx, κz, θx, θz, σx and σz are supposed to satisfy
2kxθx > σ2

x and 2kzθz > σ2
z so that 0 is unattainable for xt and zt. We assume in this paper

that pre-default intensities are mutually independent and suppose default dependence are fully
characterized by contagion. This is only for illustration convenience and the affine specification
of α1

t and α2
t can easily be extended to allow commonly dependence on a group of mutually

independent CIR variables but weighting differently on them to incorporates non-trivial cor-
relation of α1

t and α2
t , while still remaining analytically solvable. This is straightforward from

equations (3.11), (3.12), (4.25) and (4.28), because all relevant quantities are in the form that
affine specification could conclude explicit expressions.

This paper also incorporates stochastic interest rate into modeling. We assume rt is depen-
dent on the affine factors xt and zt as

rt = κx · xt + κz · zt (5.32)
where κx and κz are positive constants to account for positive correlations with credit

spreads. The explanation of κx and κz being correlation with spreads may be straightforward
but not convincing. We show this by deriving exact instantaneous correlations between pre-
default intensities and interest rate.

First, we note that κx and κz are not two free parameters, but subject to one constraint
condition r0 = κx · x0 + κz · z0, where r0, x0 = α1

0 and z0 = α2
0 are model inputs that are

previously given. Based on this equality, we get

Corr
(
dα1

t , drt

)
=

dα1
t · drt√

dα1
t · dα1

t

√
drt · drt

=
1√

1 + r2
0

z2
0

(
1

κx
− x0

r0

)2

σ2
zα2

t

/
σ2

xα1
t

(5.33)

Therefore, Corr
(
dα1

t , drt

)
is strictly increasing with respect to κx if and only if 1

κx
> x0

r0
,

or equivalently κx · x0
r0

< 1. Similarly, we have Corr
(
dα2

t , drt

)
being strictly increasing with

respect to κz if and only if κz · z0
r0

< 1. From κx · x0
r0

+ κz · z0
r0

= 1 and positivity constraint on
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κx and κz we conclude that the two equalities always hold in our model. This implies that κx

and κz represent the relative levels of instantaneous correlations of α1
t and α2

t with rt.
The following two propositions give some basic formulas in affine models.

Proposition 2. Assume Xt is an Ft-adapted affine process, more specifically a CIR process
dXt = k [θ −Xt] dt + σ

√
XtdWt ∼ Q (5.34)

Then valuation of EQ
[
exp

{
− ∫ T

t
Xsds

}∣∣∣Ft

]
and EQ

[
exp

{
− ∫ T

t
Xsds

}
XT

∣∣∣Ft

]
can be

expressed as the following affine forms,

PX(t, T ) = E

[
exp

{
−

∫ T

t

Xsds

}∣∣∣∣∣Ft

]
= AX(t, T )e−BX(t,T )Xt (5.35)

where 



BX(t, T ) =
2

[
e(T−t)h − 1

]

2h + (k + h)
[
e(T−t)h − 1

]

AX(t, T ) =

[
2he(T−t)(k+h)/2

2h + (k + h)
[
e(T−t)h − 1

]
] 2kθ

σ2
, with h =

√
k2 + 2σ2 (5.36)

and

QX(t, T ) = EQ
[

exp

{
−

∫ T

t

Xsds

}
XT

∣∣∣∣∣Ft

]
= ĀX(t, T,Xt)PX(t, T ) (5.37)

where

ĀX(t, T, Xt) = − 1
AX(t, T )

∂AX(t, T )
∂T

+
∂BX(t, T )

∂T
Xt

=
2kθ

[
e(T−t)h − 1

]

2h + (k + h)
[
e(T−t)h − 1

] +
4h2e(T−t)h

(
2h + (k + h)

[
e(T−t)h − 1

])2 Xt (5.38)

.

Proof: As well known, price of ”zero-coupon bond” PX(t, T ) with one affine factor Xt can be
expressed in the affine form (5.35) with coefficient functions AX(t, T ) and BX(t, T ) expressed
in equation (5.36).

As for price of ”default-free” claim EQ
[
exp

{
− ∫ T

t
Xsds

}
XT

∣∣∣Ft

]
, it is conclusion of for-

mula (5.35), because

QX(t, T ) = E

[
exp

{
−

∫ T

t

Xsds

}
XT

∣∣∣∣∣Ft

]
= −∂PX(t, T )

∂T

=
(
− 1

AX(t, T )
∂AX(t, T )

∂T
+

∂BX(t, T )
∂T

Xt

)
AX(t, T )e−BX(t,T )Xt

= ĀX(t, T, Xt)PX(t, T )

To simplify illustration here and in the next section, we extend the coefficient functions in
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equation (5.36) to include a parameter α, with



B(t, T ; k, θ, σ, α) =
2

[
e(T−t)h − 1

]

2h + (k + h)
[
e(T−t)h − 1

]

A(t, T ; k, θ, σ, α) =

[
2he(T−t)(k+h)/2

2h + (k + h)
[
e(T−t)h − 1

]
] 2kθ

σ2
, with h =

√
k2 + 2ασ2 (5.39)

Functions in equation (5.36) are special cases of equation (5.39) with α = 1. Actually,
B(t, T ; k, θ, σ, α) and A(t, T ; k, θ, σ, α) are corresponding coefficient functions for ”zero-coupon
bond” with CIR discount rate α · Xt. This is straightforward to prove. Moreover, we define
two coefficient functions as




W (t, T ; k, θ, σ, α) =
2kαθ

[
e(T−t)h − 1

]

2h + (k + h)
[
e(T−t)h − 1

]

M(t, T ; k, θ, σ, α) =
4h2e(T−t)h

(
2h + (k + h)

[
e(T−t)h − 1

])2

with h =
√

k2 + 2ασ2 (5.40)

Then we define
ĀX(t, T,Xt; k, θ, σ, α) = W (t, T ; k, θ, σ, α) + M(t, T ; k, θ, σ, α) · αXt (5.41)

Therefore, ĀX(t, T,Xt; k, θ, σ) in equation (5.38) is a special case of this function with α = 1.

Proposition 3. Under affine specification of factors xt and zt in equation (5.31), we get

P (t, T ) = E

[
exp

{
−

∫ T

t

[α · xs + β · zs] ds

}∣∣∣∣∣Ft

]

= Ax(t, T ;α)Az(t, T ;β)e−Bx(t,T ;α)·αxt−Bz(t,T ;β)·βzt (5.42)
with 




Bx(t, T ;α) = B(t, T ; kx, θx, σx, α)
Ax(t, T ;α) = A(t, T ; kx, θx, σx, α)
Bz(t, T ;β) = B(t, T ; kz, θz, σz, β)
Az(t, T ;β) = A(t, T ; kz, θz, σz, β)

Moreover, for α 6= 0 and β 6= 0 we have

Q(t, T ) = E

[
exp

{
−

∫ T

t

[α · xs + β · zs] ds

}
[µ · xT + ν · zT ]

∣∣∣∣∣Ft

]

=
[

µ

α
Āx(t, T, xt;α) +

ν

β
Āz(t, T, zt;β)

]
P (t, T ) (5.43)

with {
Āx(t, T, xt;α) = Āx(t, T, xt; kx, θx, σx, α)
Āz(t, T, zt;β) = Āz(t, T, zt; kz, θz, σz, β)

.

Proof: First, note that if Xt is a CIR process with parameters (k, θ, σ), then α · Xt is still
a CIR process with parameters (k, αθ,

√
ασ). Thus formula (5.42) is direct consequence of

formula (5.35) because of independence between xt and zt.
Second, Q(t, T ) can be reformulated as

Q(t, T ) = E

[
exp

{
−

∫ T

t

[α · xs + β · zs] ds

}(
µ

α
[α · xT + β · zT ] +

(
ν − µβ

α

)
· zT

)∣∣∣∣∣Ft

]
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=
µ

α
E

[
exp

{
−

∫ T

t

[α · xs + β · zs] ds

}
[α · xT + β · zT ]

∣∣∣∣∣Ft

]

+
(

ν − µβ

α

)
E

[
exp

{
−

∫ T

t

[α · xs + β · zs] ds

}
zT

∣∣∣∣∣Ft

]

=
µ

α
E

[
exp

{
−

∫ T

t

[α · xs + β · zs] ds

}
[α · xT + β · zT ]

∣∣∣∣∣Ft

]

+
(

ν − µβ

α

)
E

[
exp

{
−

∫ T

t

α · xsds

}∣∣∣∣∣Ft

]
E

[
exp

{
−

∫ T

t

β · zsds

}
zT

∣∣∣∣∣Ft

]

where the first integral in the last equality of the above equation is given by

E

[
exp

{
−

∫ T

t

[α · xs + β · zs] ds

}
[α · xT + β · zT ]

∣∣∣∣∣Ft

]
= − ∂

∂T
P (t, T )

=
[
Āx(t, T, xt;α) + Āz(t, T, zt;β)

]
P (t, T )

and the second integral is ”zero-coupon bond” with discount rate α · xt, i.e.

E

[
exp

{
−

∫ T

t

α · xsds

}∣∣∣∣∣Ft

]
≡ Ax(t, T ;α)e−Bx(t,T ;α)·αxt = Px(t, T ;α)

while the third integral is expressed as

E

[
exp

{
−

∫ T

t

β · zsds

}
zT

∣∣∣∣∣Ft

]
=

1
β

Āz(t, T, zt;β)Pz(t, T ;β)

Therefore,

Q(t, T ) =
µ

α

[
Āx(t, T, xt;α) + Āz(t, T, zt;β)

]
P (t, T )

+
(

ν − µβ

α

)
Px(t, T ;α)

1
β

Āz(t, T, zt;β)Pz(t, T ;β)

=
[

µ

α
Āx(t, T, xt;α) +

ν

β
Āz(t, T, zt;β)

]
P (t, T )

Theorem 3. Under the affine specification of α1
t , α2

t and rt in equations (5.31) and (5.32),
the pre-default price of risk-free CDS on event {τ1 > t, τ2 ≤ t} is given by

MtM (t, T )

=
∫ T

t

[
S − L1

[
1

1 + κx
Āx(t, s, xt; 1 + κx) +

η2

η2 + κz
Āz(t, s, zt; η2 + κz)

]]
P̃ (t, s)ds(5.44)

.

Proof: As equation (4.25) indicated, we have to calculate P̃ (t, s) and P̄ (t, s) in this affine
environment, which are direct conclusions of the above lemma.

P̃ (t, s) = EQ
[
exp

{
−

∫ s

t

[(1 + κx) · xu + (η2 + κz) · zu] du

}∣∣∣∣Ft

]

= Px(t, s; 1 + κx)Pz(t, s; η2 + κz)
and

P̄ (t, s) = EQ
[
exp

{
−

∫ s

t

[(1 + κx) · xu + (η2 + κz) · zu] du

}
(xu + η2 · zu)

∣∣∣∣Ft

]
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=
[

1
1 + κx

Āx(t, s, xt; 1 + κx) +
η2

η2 + κz
Āz(t, s, zt; η2 + κz)

]
P̃ (t, s)

which conclude this proof.

6 Numerical Analysis

This section performs some numerical analysis of the semi-analytical and analytical ex-
pression in equations (4.28) and (5.44). To simulate sample pathes of αi

t’s and rt, we need
simulating two independent CIR process xt and zt. It is well known that the transition law of
a CIR process Xt as in equation (5.34) given Xs can be expressed by

Xt =
σ2

(
1− e−k(t−s)

)

4k
· χ2

d

(
4ke−k(t−s)

σ2
(
1− e−k(t−s)

)Xs

)

where d = 4kθ
σ2 , and χ2

d(v) represents a non-central chi-square random variable with d degree
of freedom and v non centrality parameter. Once starts from an initial point X0, we can
simulate the process Xt exactly on a discrete time grid by sampling from the non-central chi-
square distribution.

We consider CVA of a T = 5 year CDS in this numerical analysis. Typically, ∆Tj ≡ ∆T
is 0.25 of one year, i.e. 3 months, then discretizing one payment period into 3 grids is fine
enough. Denote the numbers of entire payment periods and grids in each period by N and p,
then N = 20 and p = 3 in this section. Thus the number of entire grids is L = N × p = 60. δ is
supposed to represent the fineness of the time grid in our valuation procedure, thus δ = 1/12 in
our case. We realize an entire number I of CVA samples, then divide sum of the samples by I
to get a Monte Carlo valuation of CVA. Pseudo code of our numerical algorithm is illustrated
in Table 3, where the procedure for calculating basic functions A, B, M and W is omitted.

Table 1: Benchmark parameters of CIR pre-default intensities

X0 k θ σ

Reference 0.03 0.50 0.05 0.50
Counterparty 0.01 0.80 0.02 0.20

We chose a group of reasonable parameters as benchmark case, then vary one of the parame-
ters to analyze the impact of this parameter on CVA. The benchmark parameters for pre-default
intensities are listed in Table 1, and the other benchmark parameters in our contagion model
are listed in Table 2.

Table 2: The other benchmark parameters in contagion model

S L1 L2 η1 η2 r0 κx κz

250 bp 60% 60% 0.1 0.25 5% 1 2

To model spread volatilities of reference firm and counterparty, two sources of volatilities are
accounted in this papers, i.e. the volatilities of pre-default intensities from diffusion of Brownian
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Table 3: Algorithm for valuing unilateral CVA in view of CDS seller by Monte Carlo
CUM−CV A = 0;
for i = 1 : I do

V−0 = 0; D=1;
for j = 1 : N do

for l = [(j − 1)p + 1] : jp do
generate x = x(l · δ) and z = z(l · δ);
D = D · e−[(1+κx)x+(1+κz)z]·δ;

end for
MtM = 0;
for l = (jp + 1) : L do

a−x = Ax(jp · δ, l · δ; 1 + κx);
...

m−z = Mz(jp · δ, l · δ; η2 + κz);
(we’ve got a−x, b−x,w−x,m−x, a−z, b−z, w−z, m−z here)
mtm =

{
S − L1

[(
w−x
1+κx

+ η2∗w−z
η2+κz

)
+ (m−x · x + η2 ∗m−z · z)

]}

∗a−x ∗ a−z ∗ e(−b−x∗(1+κx)∗x+b−z∗(η2+κz)∗z) ∗ δ;
MtM = MtM + mtm;

end for
if MtM ≤ 0 then

MtM = 0;
end if
V−0 = V−0 + D ∗ z ∗MtM ;

end for
CUM−CV A = CUM−CV A + V−0;

end for
CV A = [L2 ∗ p ∗ δ ∗ CUM−CV A] /I;

motions and contagion between the two firms. For illustration simplicity, this paper assumes
that pre-default intensities are mutually independent and spread correlation is modeled solely
through contagion upon the default of one firm to the survival one. From equations (4.28) and
(5.44) it is obvious that CVA of the short CDS in the view of investor is irrelevant of contagion
parameter η1, that characterizes the extent to which contagion of default risk from reference
firm to counterparty. This can be interpreted in the way that contagion from reference to
counterparty happens only at the default time of reference firm, when the CDS will be unwound,
thus CVA of this CDS is surely zero at that time. Experiment result of impact of contagion
parameter η2 on CVA is expressed in Table 4.

Table 4: Impact of η2 on CVA

η2 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
CV A 7.3 5.9 4.8 3.7 2.7 1.9 1.3 0.8 0.5

The trend of η2’s impact on CVA is quite clear from Table 4. The greater η2 is, the smaller
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CVA will be. This is reasonable in contagion model. Equation (2.4) asserts that CVA is
discounted present value of positive MtM from the default time of counterparty. Greater η2

implies greater default intensity of the survival reference firm after time τ2. Therefore the
unrealized cashflow after τ2 will be less valued because of the greater discount rate.

Table 5: Impact of σx and σz on CVA when η2 = 0.25

(σx, σz) 0.01 0.10 0.20 0.30 0.40
0.01 0.0 0.0 0.0 0.0 0.0
0.20 1.6 1.4 1.2 0.9 0.7
0.40 4.3 4.3 3.6 2.9 2.5
0.50 5.8 5.3 4.8 3.9 3.3
0.60 6.8 6.5 5.8 5.0 4.0
0.80 8.7 8.4 7.6 6.5 5.4

Volatilities of α1
t and α2

t , as another source of spread volatilities in our contagion model,
are also important parameters that have significant impact on CVA. Table 5 and Table 6 show
the numerical results of CVA on varying σx and σz given η2 = 0.5 and η2 = 0, respectively.
The pattern in Table 5 is pretty clear. CVA is increasingly dependent on volatility σx of refer-
ence firm’s pre-default intensity while decreasingly dependent on volatility σz of counterparty’s
pre-default intensity. Moreover, Table 5 shows that CVA is much more sensitive on σx, which
is volatility of pre-default intensity for reference entity. Comparing Table 4 and Table 5 we
find that contagion is dominant in the two sources of spread volatilities, i.e. contagion from
counterparty to reference has much greater impact on CVA than counterparty’s own volatility
of pre-default intensity. This confirms the importance of introducing contagion into default
dependence while calculating CVA. Table 4, Table 5 and Table 6 jointly show that in the pres-
ence of contagion, i.e. η2 > 0, contagion effect is dominant over volatility from counterparty’s
pre-default intensity, while reference’s intensity volatility has significant impact on CVA.

Table 6: Impact of σx and σz on CVA when η2 = 0

(σx, σz) 0.01 0.10 0.20 0.30 0.40
0.01 0.0 0.0 0.0 0.0 0.0
0.20 2.7 2.7 2.5 2.5 2.3
0.40 6.2 6.2 5.3 5.3 5.1
0.50 7.7 7.5 7.2 6.8 6.3
0.60 8.8 8.7 8.6 7.7 7.1
0.80 11.0 10.7 10.3 9.9 9.1

To check the impact of correlation between spread and interest on CVA, we just have to
analyze the impact of κx or κz on CVA, as indicated in the beginning of Section 5. We chose κx

as free parameter, then κz can be given as κz = [r0 − κx · x0]/z0 = 5− 3κx for the benchmark
parameters. Moreover, we have κx < r0/x0 = 5/3. Thus we chose the 8 special values of
κx in Table 7 for illustration. Table 7 shows a humped pattern of κ’s impact on CVA in the
situation of η2 = 0.5. For the special cases of rt being independent from one of the pre-default
intensities, i.e. κx = 0 or κz = 0, CVA is significantly smaller than the modest cases. When



19

increasing κx from 0 to its upper bound 5/3, CVA increases in the first phase until κx = 1.
Then CVA decreases significantly as κx approximating its upper bound 5/3. For the situation
of η2 = 0.25, as the benchmark case in our numerical experiment, influence of contagion is
weaker while impact of pre-default intensity correlation plays significant role. Table 7 shows
that CVA is monotonic increasing with respect to κx, i.e. with correlation between α1

t and rt.

Table 7: Impact of κ on CVA

κx 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.67
κz 5.00 4.25 3.50 2.75 2.00 1.25 0.50 0.00

CV A when η2 = 0.25 3.7 4.0 4.1 4.4 4.8 5.0 5.4 5.6
CV A when η2 = 0.5 3.6 4.0 4.3 4.6 4.6 4.5 3.6 2.1

7 Conclusion

This paper models volatility of MtM of a short CDS in contagion model with stochastic
intensities and interest rate. Therefore, two sources of spread volatility is characterized in our
model. Survival measure approach is adopted in this paper to calculate MtM of risk-free CDS
as well as conditional distribution of counterparty’s default time in defaultable environment,
and semi-analytical solution for CVA is attained. Affine specification of intensities and interest
rate concludes analytical expression for pre-default value of MtM. Pseudo code of the numerical
algorithm is presented in this paper. Numerical analysis shows that contagion constitutes as the
major source of volatility for MtM while calculating CVA. Strictly increasing and decreasing
patterns of reference’s and counterparty’s volatilities on CVA is displayed in our experiment
when contagion is present. A humped pattern of correlation between spread and interest rate
is detected in the situation of relatively larger eta’s while monotonic pattern is exhibited for
the case of relatively smaller η’s.
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[5] Crépey, S., Jeanblanc, M., Zargari, B.(2009). CDS with counterparty risk in a Markov chain
copula model with joint defaults. Working paper.

[6] Gregory, J.(2010). Counterparty credit risk: the new challenge for global financial markets.
Wiely Finance.



20

[7] Huge, B., Lando, D.(1999). Swap pricing with two-sided default risk an a rating-based
model. European Finance Review, 3, 239-268.

[8] Hull, J., White, A.(2001). Valuting credit default swaps II: modeling default correlation.
The Journal of Derivatives, 8(3), 12-22.

[9] Jarrow, R., Yu, F.(2001). Counterparty risk and the pricing of defaultable securities. Journal
of Finance, 56, 1765-1800.

[10] Leung, S. Y., Kwok, Y. K.(2005). Credit default swap valuation with counterparty risk,
Kyoto Economics Review, 74, 25-45.

[11] Leung, K. S., Kwok, Y. K.(2009). Counterparty risk for credit default swaps: Markov
chain interacting intensities model with stochastic intensity. Asia-Pacific Finan Markets,
16, 169C181.
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