94,203 research outputs found

    Antikaon flow in heavy-ion collisions: the effects of absorption and mean fields

    Get PDF
    We study antikaon flow in heavy-ion collisions at SIS energies based on the relativistic transport model (RVUU 1.0). The production of antikaons from both baryon-baryon and pion-baryon collisions are included. Taking into account only elastic and inelastic collisions of the antikaon with nucleons and neglecting its mean-field potential as in the cascade model, a strong antiflow or anti-correlation of antikaons with respect to nucleons is seen as a result of the strong absorption of antikaons by nucleons. However, the antiflow of antikaons disappears after including also their propagation in the attractive mean-field potential. The experimental measurement of antikaon flow in heavy-ion collision will be very useful in shedding lights on the relative importance of antikaon absorption versus its mean-field potential.Comment: 12 pages, 2 postscript figures omitted in the original submission are included, to appear in Phys. Rev.

    Antiproton production in Ni+Ni collisions at 1.85 GeV/nucleon

    Get PDF
    Antiproton production in Ni+Ni collisions at 1.85 GeV/nucleon is studied in the relativistic Vlasov-Uehling-Uhlenbeck model. The self-energies of the antiproton are determined from the nucleon self-energies by the G-parity transformation. Also, the final-state interactions of the antiproton including both rescattering and annihilation are explicitly treated. With a soft nuclear equation of state, the calculated antiproton momentum spectrum is in good agreement with recent experimental data from the heavy-ion synchrotron at GSI. The effect due to the reduced nucleon and antinucleon masses in a medium is found to be more appreciable than in earlier Bevalac experiments with lighter systems and at higher energies.Comment: 10 pages, 4 figures available upon request to [email protected]. TAMUNT-940

    Interacting non-minimally coupled canonical, phantom and quintom models of holographic dark energy in non-flat universe

    Get PDF
    Motivated by our recent work \cite{set1}, we generalize this work to the interacting non-flat case. Therefore in this paper we deal with canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, within the framework of interacting holographic dark energy. We employ the holographic model of interacting dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named LL.Comment: 18 pages, 3 figures. Accepted for publication in IJMPD (2010

    Weak gravity conjecture constraints on inflation

    Get PDF
    We consider the gravitational correction to the coupling of the scalar fields. Weak gravity conjecture says that the gravitational correction to the running of scalar coupling should be less than the contribution from scalar fields. For instance, a new scale Λ=λ41/2Mp\Lambda=\lambda_4^{1/2}M_p sets a UV cutoff on the validity of the effective λ4ϕ4\lambda_4 \phi^4 theory. Furthermore, this conjecture implies a possible constraint on the inflation model, e.g. the chaotic inflation model might be in the swampland.Comment: 11 pages, 3 figs; monor corrections; some clarifying remarks added and the final version for publication in JHE

    Enhancement of low-mass dileptons in SPS heavy-ion collisions: possible evidence for dropping rho meson mass in medium

    Get PDF
    Dilepton production in proton- and nucleus-induced reactions at SPS energies is studied in the relativistic transport model using initial conditions determined by the string dynamics from RQMD. It is found that both the CERES and HELIOS-3 data for dilepton spectra in proton-nucleus reactions can be well described by the conventional mechanism of Dalitz decay and direct vector meson decay. However, to provide a quantitative explanation of the observed dilepton spectra in central S+Au and S+W collisions requires contributions other than these direct decays. Introducing a decrease of vector meson masses in hot dense medium, we find that these heavy-ion data can also be satisfactorily explained. We also give predictions for Pb+Au collisions at 160 GeV/nucleon using current CERES mass resolution and acceptance.Comment: 8 pages, LaTeX, figures available from [email protected], contribution to QM'96, to appear in the proceeding

    An Implication of "Gravity as the Weakest Force"

    Get PDF
    The negative specific heat of a radiating black hole is indicative of a cataclysmic endpoint to the evaporation process. In this letter, we suggest a simple mechanism for circumventing such a dramatic outcome. The basis for our argument is a conjecture that was recently proposed by Arkani-Hamed and collaborators. To put it another way, we use their notion of ``Gravity as the Weakest Force'' as a means of inhibiting the process of black hole evaporation.Comment: 7 pages; v2 some discussion clarifie

    Medium Dependence of the Vector-Meson Mass: Dynamical and/or Brown-Rho Scaling?

    Full text link
    We discuss the similarities and differences for the theories of Rapp, Wambach and collaborators (called R/W in short) and those based on Brown-Rho scaling (called B/R), as applied to reproduce the dileptons measured by the CERES collaboration in the CERN experiments. In both theories the large number of dileptons at invariant masses ∌\sim~mρ/2m_\rho/2 are shown to be chiefly produced by a density-dependent ρ\rho-meson mass. In R/W the medium dependence is dynamically calculated using hadronic variables defined in the matter-free vacuum. In B/R scaling it follows from movement towards chiral symmetry restoration due to medium-induced vacuum change, and is described in terms of constituent (or quasiparticle) quarks. We argue that the R/W description should be reliable up to densities somewhat beyond nuclear density, where hadrons are the effective variables. At higher density there should be a crossover to constituent quarks as effective variables scaling according to B/R. In the crossover region, the two descriptions must be ``dual''.Comment: 13 pages LaTeX, incl. 5 eps-figures and appb.sty; Talk given at the Workshop on 'The Structure of Mesons, Baryons and Nuclei', Cracow, May 1998, in honor of J. Speth's 60th birthday, to be published in Acta Physica Polonica

    The Measure for the Multiverse and the Probability for Inflation

    Full text link
    We investigate the measure problem in the framework of inflationary cosmology. The measure of the history space is constructed and applied to inflation models. Using this measure, it is shown that the probability for the generalized single field slow roll inflation to last for NN e-folds is suppressed by a factor exp⁡(−3N)\exp(-3N), and the probability for the generalized nn-field slow roll inflation is suppressed by a much larger factor exp⁡(−3nN)\exp(-3nN). Some non-inflationary models such as the cyclic model do not suffer from this difficulty.Comment: 16 page
    • 

    corecore