7,952 research outputs found

    Optimization of ultrafine entanglement witnesses

    Full text link
    The ultrafine entanglement witness, introduced in [F. Shahandeh, M. Ringbauer, J.C. Loredo, and T.C. Ralph, Phys. Rev. Lett. \textbf{118}, 110502 (2017)], can seamlessly and easily improve any standard entanglement witness. In this paper, by combining the constraint and the test operators, we rotate the hyperplane determined by the test operator and improve further the original ultrafine entanglement witness. In particular, we present a series of new ultrafine entanglement witnesses, which not only can detect entangled states that the original ultrafine entanglement witnesses cannot detect, but also have the merits that the original ultrafine entanglement witnesses have.Comment: 8 page

    Calculation of the Branching Ratio of B−→hc+K−B^{-}\to h_{c}+K^{-} in PQCD

    Get PDF
    The branching ratio of B−→hc+K−B^-\to h_c+K^- is re-evaluated in the PQCD approach. In this theoretical framework all the phenomenological parameters in the wavefunctions and Sudakov factor are priori fixed by fitting other experimental data, and in the whole numerical computations we do not introduce any new parameter. Our results are consistent with the upper bounds set by the Babar and Belle measurements.Comment: 12 pages, 1 figure, version to appear in Phys. Rev.

    A note on the growth factor in Gaussian elimination for generalized Higham matrices

    Full text link
    The Higham matrix is a complex symmetric matrix A=B+iC, where both B and C are real, symmetric and positive definite and i=−1\mathrm{i}=\sqrt{-1} is the imaginary unit. For any Higham matrix A, Ikramov et al. showed that the growth factor in Gaussian elimination is less than 3. In this paper, based on the previous results, a new bound of the growth factor is obtained by using the maximum of the condition numbers of matrixes B and C for the generalized Higham matrix A, which strengthens this bound to 2 and proves the Higham's conjecture.Comment: 8 pages, 2 figures; Submitted to MOC on Dec. 22 201

    Hybrid Precoder and Combiner Design with Low Resolution Phase Shifters in mmWave MIMO Systems

    Get PDF
    Millimeter wave (mmWave) communications have been considered as a key technology for next generation cellular systems and Wi-Fi networks because of its advances in providing orders-of-magnitude wider bandwidth than current wireless networks. Economical and energy efficient analog/digial hybrid precoding and combining transceivers have been often proposed for mmWave massive multiple-input multiple-output (MIMO) systems to overcome the severe propagation loss of mmWave channels. One major shortcoming of existing solutions lies in the assumption of infinite or high-resolution phase shifters (PSs) to realize the analog beamformers. However, low-resolution PSs are typically adopted in practice to reduce the hardware cost and power consumption. Motivated by this fact, in this paper, we investigate the practical design of hybrid precoders and combiners with low-resolution PSs in mmWave MIMO systems. In particular, we propose an iterative algorithm which successively designs the low-resolution analog precoder and combiner pair for each data stream, aiming at conditionally maximizing the spectral efficiency. Then, the digital precoder and combiner are computed based on the obtained effective baseband channel to further enhance the spectral efficiency. In an effort to achieve an even more hardware-efficient large antenna array, we also investigate the design of hybrid beamformers with one-bit resolution (binary) PSs, and present a novel binary analog precoder and combiner optimization algorithm with quadratic complexity in the number of antennas. The proposed low-resolution hybrid beamforming design is further extended to multiuser MIMO communication systems. Simulation results demonstrate the performance advantages of the proposed algorithms compared to existing low-resolution hybrid beamforming designs, particularly for the one-bit resolution PS scenario
    • …
    corecore