121,204 research outputs found

    Up Sector of Minimal Flavor Violation: Top Quark Properties and Direct D meson CP violation

    Full text link
    Minimal Flavor Violation in the up-type quark sector leads to particularly interesting phenomenology due to the interplay of flavor physics in the charm sector and collider physics from flavor changing processes in the top sector. We study the most general operators that can affect top quark properties and DD meson decays in this scenario, concentrating on two CP violating operators for detailed studies. The consequences of these effective operators on charm and top flavor changing processes are generically small, but can be enhanced if there exists a light flavor mediator that is a Standard Model gauge singlet scalar and transforms under the flavor symmetry group. This flavor mediator can satisfy the current experimental bounds with a mass as low as tens of GeV and explain observed DD-meson direct CP violation. Additionally, the model predicts a non-trivial branching fraction for a top quark decay that would mimic a dijet resonance.Comment: 27 pages, 7 figure

    Free field realization of current superalgebra gl(m∣n)kgl(m|n)_k

    Get PDF
    We construct the free field representation of the affine currents, energy-momentum tensor and screening currents of the first kind of the current superalgebra gl(m∣n)kgl(m|n)_k uniformly for m=nm=n and m≠nm\neq n. The energy-momentum tensor is given by a linear combination of two Sugawara tensors associated with the two independent quadratic Casimir elements of gl(m∣n)gl(m|n).Comment: Latex file, 15 page

    Throughput Maximization for UAV-Aided Backscatter Communication Networks

    Get PDF
    This paper investigates unmanned aerial vehicle (UAV)-aided backscatter communication (BackCom) networks, where the UAV is leveraged to help the backscatter device (BD) forward signals to the receiver. Based on the presence or absence of a direct link between BD and receiver, two protocols, namely transmit-backscatter (TB) protocol and transmit-backscatter-relay (TBR) protocol, are proposed to utilize the UAV to assist the BD. In particular, we formulate the system throughput maximization problems for the two protocols by jointly optimizing the time allocation, reflection coefficient and UAV trajectory. Different static/dynamic circuit power consumption models for the two protocols are analyzed. The resulting optimization problems are shown to be non-convex, which are challenging to solve. We first consider the dynamic circuit power consumption model, and decompose the original problems into three sub-problems, namely time allocation optimization with fixed UAV trajectory and reflection coefficient, reflection coefficient optimization with fixed UAV trajectory and time allocation, and UAV trajectory optimization with fixed reflection coefficient and time allocation. Then, an efficient iterative algorithm is proposed for both protocols by leveraging the block coordinate descent method and successive convex approximation (SCA) techniques. In addition, for the static circuit power consumption model, we obtain the optimal time allocation with a given reflection coefficient and UAV trajectory and the optimal reflection coefficient with low computational complexity by using the Lagrangian dual method. Simulation results show that the proposed protocols are able to achieve significant throughput gains over the compared benchmarks

    Nondeterminstic ultrafast ground state cooling of a mechanical resonator

    Full text link
    We present an ultrafast feasible scheme for ground state cooling of a mechanical resonator via repeated random time-interval measurements on an auxiliary flux qubit. We find that the ground state cooling can be achieved with \emph{several} such measurements. The cooling efficiency hardly depends on the time-intervals between any two consecutive measurements. The scheme is also robust against environmental noises.Comment: 4 pages, 3 figure

    Experimental Realization of Br\"{u}schweiler's exponentially fast search algorithm in a homo-nuclear system

    Full text link
    Compared with classical search algorithms, Grover quantum algorithm [ Phys. Rev. Lett., 79, 325(1997)] achieves quadratic speedup and Bruschweiler hybrid quantum algorithm [Phys. Rev. Lett., 85, 4815(2000)] achieves an exponential speedup. In this paper, we report the experimental realization of the Bruschweiler$ algorithm in a 3-qubit NMR ensemble system. The pulse sequences are used for the algorithms and the measurement method used here is improved on that used by Bruschweiler, namely, instead of quantitatively measuring the spin projection of the ancilla bit, we utilize the shape of the ancilla bit spectrum. By simply judging the downwardness or upwardness of the corresponding peaks in an ancilla bit spectrum, the bit value of the marked state can be read out, especially, the geometric nature of this read-out can make the results more robust against errors.Comment: 10 pages and 3 figure
    • …
    corecore