135,059 research outputs found

    The IT performance evaluation in the construction industry

    Get PDF
    To date there has been limited published work in the construction management and engineering literature that has provided empirical evidence to demonstrate that IT can improve organizational performance. Without an explicit understanding about how IT can be effectively used to improve organizational performance, its justification will remain to be weak for managers. To ensure the continuous increase in IT based applications in the construction industry, sufficient evidence has to be provided for management in various professions of the construction industry to evaluate, allocate and utilize appropriate IT systems. In an attempt to explore the relationship between IT and productivity, an empirical investigation of 60 Professional Consulting Firms (PCF) from the Hong Kong construction industry was undertaken. A model for determining the organizational productivity of IT is proposed, and the methodology used to test the model is described. The findings are analyzed and a cross-profession comparison of the results indicated the differences in the use of IT. The research findings are discussed with similarities being drawn. The limitations of the research are then presented and discussed. The implications of the findings and conclusions then fully presented

    Ground Band and a Generalized GP-equation for Spinor Bose-Einstein Condensates

    Full text link
    For the spinor Bose-Einstein condensates both the total spin SS and its Z-component SZS_{Z} should be conserved. However, in existing theories, only the conservation of SzS_{z} has been taken into account. To remedy, this paper is the first attempt to take the conservation of both % S and SZS_{Z} into account. For this purpose, a total spin-state with the good quantum numbers SS and SZS_{Z} is introduced in the trial wave function, thereby a generalized Gross-Pitaevskii equation has been derived. With this new equation, the ground bands of the 23^{23}Na and % ^{87}Rb condensates have been studied, where the levels distinct in SS split. It was found that the level density is extremely dense in the bottom of the ground band of 23^{23}Na, i.e., in the vicinity of the ground state. On the contrary, for 87^{87}Rb, the levels are extremely dense in the top of the ground band,Comment: 7 page, 5 figure

    Quasiparticles dynamics in high-temperature superconductors far from equilibrium: an indication of pairing amplitude without phase coherence

    Full text link
    We perform time resolved photoelectron spectroscopy measurements of optimally doped \tn{Bi}_2\tn{Sr}_2\tn{CaCu}_2\tn{O}_{8+\delta} (Bi-2212) and \tn{Bi}_2\tn{Sr}_{2-x}\tn{La}_{x}\tn{Cu}\tn{O}_{6+\delta} (Bi-2201). The electrons dynamics show that inelastic scattering by nodal quasiparticles decreases when the temperature is lowered below the critical value of the superconducting phase transition. This drop of electronic dissipation is astonishingly robust and survives to photoexcitation densities much larger than the value sustained by long-range superconductivity. The unconventional behaviour of quasiparticle scattering is ascribed to superconducting correlations extending on a length scale comparable to the inelastic path. Our measurements indicate that strongly driven superconductors enter in a regime without phase coherence but finite pairing amplitude. The latter vanishes near to the critical temperature and has no evident link with the pseudogap observed by Angle Resolved Photoelectron Spectroscopy (ARPES).Comment: 7 pages, 5 Figure

    Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models

    Get PDF
    A major source of error for repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is the phase delay in radio signal propagation through the atmosphere (especially the part due to tropospheric water vapour). Based on experience with the Global Positioning System (GPS)/Moderate Resolution Imaging Spectroradiometer (MODIS) integrated model and the Medium Resolution Imaging Spectrometer (MERIS) correction model, two new advanced InSAR water vapour correction models are demonstrated using both MERIS and MODIS data: (1) the MERIS/MODIS combination correction model (MMCC); and (2) the MERIS/MODIS stacked correction model (MMSC). The applications of both the MMCC and MMSC models to ENVISAT Advanced Synthetic Aperture Radar (ASAR) data over the Southern California Integrated GPS Network (SCIGN) region showed a significant reduction in water vapour effects on ASAR interferograms, with the root mean square (RMS) differences between GPS- and InSAR-derived range changes in the line-of-sight (LOS) direction decreasing from ,10mm before correction to ,5mm after correction, which is similar to the GPS/MODIS integrated and MERIS correction models. It is expected that these two advanced water vapour correction models can expand the application of MERIS and MODIS data for InSAR atmospheric correction. A simple but effective approach has been developed to destripe Terra MODIS images contaminated by radiometric calibration errors. Another two limiting factors on the MMCC and MMSC models have also been investigated in this paper: (1) the impact of the time difference between MODIS and SAR data; and (2) the frequency of cloud-free conditions at the global scale
    corecore