1,401 research outputs found

    Size distribution of individuals in the population of Asterias amurensis (Echinodermata: Asteroidea) and its reproductive cycle in China

    Get PDF
    To obtain baseline information on the size distribution of individuals in the population and reproductive features of sea star Asterias amurensis, monthly surveys of the population were carried out from May to December 2010 and March to May 2015 in coastal waters off Yantai, China. Spawning period was predicted by gonad and pyloric caeca indices as well as anatomical and histological methods. In the A. amurensis population, both large individuals (> 143 mm) and small ones (< 42 mm) were present in all sampling months. The population size structure was driven by the appearance of big cohorts of individuals less than 55 mm from May to August. The appearance of small individuals in all months suggested a prolonged spawning period at other sites in this bay or sea stars growing slowly because of food shortage. An arm length is a good predictor to wet body weight for A. amurensis. The development of gonad was relative slow from May to September but rapidly reached a peak of 20.95 in October 2010, and then dropped remarkably, indicating its spawning lasted from October to November. The same phenomenon was found from March to May 2015, suggesting another spawning during March to May, which was also verified by the results of histologic analysis on ovary. The gonad index (GI) and pyloric caeca index (PCI) tended to show a negative relationship. Due to the poor food availability, the reproductive characteristics of sea star were most likely affected by the shellfish mariculturein Yantai coastal waters

    A Time-Resolved Line-Focus Acoustic Microscopy Technique for Surface-Breaking Crack Depth Determination

    Get PDF
    Time-resolved line-focus acoustic microscopy (TRLFAM) combines the advantages of a conventional pulse-echo system with those of the acoustic microscope. Compared to high frequency line-focus acoustic microscopy [1], this technique employs a much larger (aperture 28mm) pulsed line-focus immersion transducer at much lower center frequencies. The insonified length of the specimen is an order of magnitude larger than that of the line-focus acoustic microscope operating at 225 MHz. This has the advantage that the amplitudes and the arrival times of the directly reflected wave, the leaky surface wave as well as other possible echo arrivals, can be time-resolved with considerable accuracy when the sample is moved inside the focal region of the transducer. Moreover, since the transducer is line focused, for an anisotropic material leaky surface wave arrivals can be time resolved along different directions. In earlier papers TRLFAM has been used to determine elastic constants for both isotropic and anisotropic materials [2]

    Eliminación de DBP en aceite de onagra mediante arcilla activada modificada por chitosán y CTAB

    Get PDF
    The pollution of phthalic acid esters (PAEs) in edible oils is a serious problem. In the current study, we attempt to remove dibutyl phthalate ester (DBP) from evening primrose oil (EPO) with modified activated clay. The activated clay, commonly used for de-coloration in the oil refining process, was modified by chitosan and hexadecyl trimethyl ammonium bromide (CTAB). The modifications were characterized by SEM, XRD, and FT-IR. We further tested the DBP adsorption capacity of CTAB/chitosan-clay and found that the removal rate was 27.56% which was 3.24 times higher than with pristine activated clay. In addition, the CTAB/chitosan-clay composite treatment had no significant effect on the quality of evening primrose oil. In summary, the CTAB/chitosan-clay composite has a stronger DBP adsorption capacity and can be used as a new adsorbent for removing DBP during the de-coloration process of evening primrose oil.La contaminación por ésteres de ácido ftálico (PAEs) en los aceites comestibles es un problema grave. En el presente estudio, intentamos eliminar el éster de ftalato de dibutilo (DBP) del aceite de onagra (EPO) con arcilla activada modificada. La arcilla activada, comúnmente utilizada en la decoloración en el proceso de refinación de los aceites, fue modificada con chitosán y bromuro de hexadecil trimetil amonio (CTAB). Las modificaciones se caracterizaron mediante SEM, XRD y FT-IR. Además, probamos la capacidad de adsorción de DBP de CTAB / chitosán-arcilla y descubrimos que la tasa de eliminación era del 27,56%, que era 3,24 veces mayor que la arcilla activada pura. Además, el tratamiento compuesto de CTAB/chitosán-arcilla no tuvo un efecto significativo sobre la calidad del aceite de onagra. En resumen, el compuesto CTAB/chitosán-arcilla tiene una capacidad de adsorción de DBP más fuerte y se puede utilizar como un nuevo adsorbente para eliminar DBP durante el proceso de decoloración del aceite de onagra

    Shared-network scheme of SMV and GOOSE in smart substation

    Get PDF

    Heat dissipation in atomic-scale junctions

    Full text link
    Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms to test quantum transport theories that are required to describe charge and energy transfer in novel functional nanodevices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized due to experimental challenges. Here, using custom-fabricated scanning probes with integrated nanoscale thermocouples, we show that heat dissipation in the electrodes of molecular junctions, whose transmission characteristics are strongly dependent on energy, is asymmetric, i.e. unequal and dependent on both the bias polarity and the identity of majority charge carriers (electrons vs. holes). In contrast, atomic junctions whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions, which is an important and challenging scientific and technological goal that has remained elusive.Comment: supporting information available in the journal web site or upon reques

    A review of physical supply and EROI of fossil fuels in China

    Get PDF
    This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found

    Molecular cloning and transcriptional activity of a new Petunia calreticulin gene involved in pistil transmitting tract maturation, progamic phase, and double fertilization

    Get PDF
    Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca2+-binding protein in multicellular eukaryotes. As an endoplasmic reticulum-resident protein, CRT plays a key role in many cellular processes including Ca2+ storage and release, protein synthesis, and molecular chaperoning in both animals and plants. CRT has long been suggested to play a role in plant sexual reproduction. To begin to address this possibility, we cloned and characterized the full-length cDNA of a new CRT gene (PhCRT) from Petunia. The deduced amino acid sequence of PhCRT shares homology with other known plant CRTs, and phylogenetic analysis indicates that the PhCRT cDNA clone belongs to the CRT1/CRT2 subclass. Northern blot analysis and fluorescent in situ hybridization were used to assess PhCRT gene expression in different parts of the pistil before pollination, during subsequent stages of the progamic phase, and at fertilization. The highest level of PhCRT mRNA was detected in the stigma–style part of the unpollinated pistil 1 day before anthesis and during the early stage of the progamic phase, when pollen is germinated and tubes outgrow on the stigma. In the ovary, PhCRT mRNA was most abundant after pollination and reached maximum at the late stage of the progamic phase, when pollen tubes grow into the ovules and fertilization occurs. PhCRT mRNA transcripts were seen to accumulate predominantly in transmitting tract cells of maturing and receptive stigma, in germinated pollen/growing tubes, and at the micropylar region of the ovule, where the female gametophyte is located. From these results, we suggest that PhCRT gene expression is up-regulated during secretory activity of the pistil transmitting tract cells, pollen germination and outgrowth of the tubes, and then during gamete fusion and early embryogenesis
    • …
    corecore