17 research outputs found

    A key to selected rockfishes (Sebastes spp.) based on mitochondrial DNA restriction fragment analysis

    Get PDF
    Larval and juvenile rockfishes (Sebastes spp.) are difficult to identify using morphological characters. We developed a key based on sizes of restriction endonuclease fragments of the NADH dehydrogenase-3 and -4 (ND3/ND4) and 12S and 16S ribosomal RNA (12S/16S) mitochondrial regions. The key makes use of variation in the ND3/ND4 region. Restriction endonuclease Dde I variation can corroborate identifications, as can 12S/16S variation. The key, based on 71 species, includes most North American taxa, several Asian species, and Sebastolobus alascanus and Helicolenus hilgendorfi that are closely related to rockfishes. Fifty-eight of 71 rockfish species in our database can be distinguished unequivocally, using one to five restriction enzymes; identities of the remaining species are narrowed to small groups: 1) S. polyspinis, S. crameri, and S. ciliatus or variabilis (the two species could not be distinguished and were considered as a single species) ; 2) S. chlorostictus, S. eos, and S. rosenblatti; 3) S. entomelas and S. mystinus; 4)S. emphaeus, S. variegatus, and S. wilsoni; and 5) S. carnatus and S. chrysomelas

    Genetic and morphological identification of pelagic juvenile rockfish collected from the Gulf of Alaska

    Get PDF
    Pelagic juvenile rockfish (Sebastes spp.) collected in surveys designed to assess juvenile salmonids and other species in the Gulf of Alaska in 1998 and 2000–2003 provide an opportunity to document the occurrence of the pelagic juveniles of several species of rockfish. Often, species identification of rockfish is difficult or impossible at this stage of development (~20 to 60 mm), and few species indigenous to Alaska waters have been described. Use of mitochondrial DNA markers for rockfish species allowed unequivocal identification of ten species (S. aleutianus, S. alutus, S. borealis, S. entomelas, S. flavidus, S. melanops, S. pinniger, S. proriger, S. reedi, and S. ruberrimus) in subsamples from the collections. Other specimens were genetically assignable to groups of two or three species. Sebastes borealis, S. crameri, and S. reedi were identified using morphological data. Combining genetic and morphological data allowed successful resolution of the other species as S. emphaeus, probably S. ciliatus (although S. polyspinis cannot be totally ruled out), and S. polyspinis. Many specimens were initially morphologically indistinguishable from S. alutus, and several morphological groups included fish genetically identified as S. alutus. This paper details the characteristics of these pelagic juveniles to facilitate morphological identification of these species in future collections. (PDF file contains 32 pages.

    Phylogenetic relationships and identification of juveniles of the genus Sebastes

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2004The genus Sebastes is speciose and most members are distributed in the northeastern Pacific Ocean (NEP). Historically, morphology has been the basis for species identification and determination of phylogenetic relationships. However, because many Sebastes species overlap in range and are similar in morphology, especially during early life stages, morphological characters are often inadequate for species identification. This study examines the potential of using restriction site variation in the mitochondrial NADH-dehydrogenase subunits -3 and -4 and 12S and 16S ribosomal RNA genes to resolve the problems in species identification and phylogenetic relationships, particularly assignments to subgenera. Of the 71 species representing 16 subgenera examined, 58 species had species-specific mtDNA markers. The identity of the remaining species could be narrowed down to small groups. Forty-nine juveniles were tested for their identity. Twenty-four specimens were identified either to species or to a small group of species; the remaining specimens were not identified because of low quality of DNA. Analysis of the coherence of current sub generic assignments revealed that only the subgenus Sebastomus was monophyletic. Some consistent groups were formed by members from different subgenera. In particular, NEP members of the subgenus Pteropodus were monophyletic with three other NEP species in two subgenera.Identification of rockfish (genus Sebastes spp.) by restriction site analysis of the mitochondrial ND3/ND4 region -- Phylogeny of members of the Sebastes subgenus Pteropodus and their relatives -- Phylogenetic relationship of the subgenera of Sebastes -- Conclusions

    Impacts of the autumn Arctic sea ice on the intraseasonal reversal of the winter Siberian high

    Get PDF
    During 1979–2015, the intensity of the Siberian high (SH) in November and December–January (DJ) is frequently shown to have an out-of-phase relationship, which is accompanied by opposite surface air temperature and circulation anomalies. Further analyses indicate that the autumn Arctic sea ice is important for the phase reversal of the SH. There is a significantly positive (negative) correlation between the November (DJ) SH and the September sea ice area (SIA) anomalies. It is suggested that the reduction of autumn SIA induces anomalous upward surface turbulent heat flux (SHF), which can persist into November, especially over the Barents Sea. Consequently, the enhanced eddy energy and wave activity flux are transported to mid and high latitudes. This will then benefit the development of the storm track in northeastern Europe. Conversely, when downward SHF anomalies prevail in DJ, the decreased heat flux and suppressed eddy energy hinder the growth of the storm track during DJ over the Barents Sea and Europe. Through the eddy–mean flow interaction, the strengthened (weakened) storm track activities induce decreased (increased) Ural blockings and accelerated (decelerated) westerlies, which makes the cold air from the Arctic inhibited (transported) over the Siberian area. Therefore, a weaker (stronger) SH in November (DJ) occurs downstream. Moreover, anomalously large snowfall may intensify the SH in DJ rather than in November. The ensemble-mean results from the CMIP5 historical simulations further confirm these connections. The different responses to Arctic sea ice anomalies in early and middle winter set this study apart from earlier ones

    Understanding of European Cold Extremes, Sudden Stratospheric Warming, and Siberian Snow Accumulation in the Winter of 2017/18

    Get PDF
    It is unclear whether the Eurasian snow plays a role in the tropospheric driving of sudden stratospheric warming (SSW). The major SSW event of February 2018 is analyzed using reanalysis datasets. Characterized by predominant planetary waves of zonal wave 2, the SSW developed into a vortex split via wave–mean flow interaction. In the following two weeks, the downward migration of zonal-mean zonal wind anomalies was accompanied by a significant transition to the negative phase of the North Atlantic Oscillation, leading to extensive cold extremes across Europe. Here, we demonstrate that anomalous Siberian snow accumulation could have played an important role in the 2018 SSW occurrence. In the 2017/18 winter, snow depths over Siberia were much higher than normal. A lead–lag correlation analysis shows that the positive fluctuating snow depth anomalies, leading to intensified “cold domes” over eastern Siberia (i.e., in a region where the climatological upward planetary waves maximize), precede enhanced wave-2 pulses of meridional heat fluxes (100 hPa) by 7–8 days. The snow–SSW linkage over 2003–19 is further investigated, and some common traits among three split events are found. These include a time lag of about one week between the maximum anomalies of snow depth and wave-2 pulses (100 hPa), high sea level pressure favored by anomalous snowpack, and a ridge anchoring over Siberia as precursor of the splits. The role of tropospheric ridges over Alaska and the Urals in the wave-2 enhancement and the role of Arctic sea ice loss in Siberian snow accumulation are also discussed

    Understanding of European Cold Extremes, Sudden Stratospheric Warming, and Siberian Snow Accumulation in the Winter of 2017/18

    No full text
    It is unclear whether the Eurasian snow plays a role in the tropospheric driving of sudden stratospheric warming (SSW). The major SSW event of February 2018 is analyzed using reanalysis datasets. Characterized by predominant planetary waves of zonal wave 2, the SSW developed into a vortex split via wave–mean flow interaction. In the following two weeks, the downward migration of zonal-mean zonal wind anomalies was accompanied by a significant transition to the negative phase of the North Atlantic Oscillation, leading to extensive cold extremes across Europe. Here, we demonstrate that anomalous Siberian snow accumulation could have played an important role in the 2018 SSW occurrence. In the 2017/18 winter, snow depths over Siberia were much higher than normal. A lead–lag correlation analysis shows that the positive fluctuating snow depth anomalies, leading to intensified “cold domes” over eastern Siberia (i.e., in a region where the climatological upward planetary waves maximize), precede enhanced wave-2 pulses of meridional heat fluxes (100 hPa) by 7–8 days. The snow–SSW linkage over 2003–19 is further investigated, and some common traits among three split events are found. These include a time lag of about one week between the maximum anomalies of snow depth and wave-2 pulses (100 hPa), high sea level pressure favored by anomalous snowpack, and a ridge anchoring over Siberia as precursor of the splits. The role of tropospheric ridges over Alaska and the Urals in the wave-2 enhancement and the role of Arctic sea ice loss in Siberian snow accumulation are also discussed

    Understanding of European Cold Extremes, Sudden Stratospheric Warming, and Siberian Snow Accumulation in the Winter of 2017/18

    No full text
    It is unclear whether the Eurasian snow plays a role in the tropospheric driving of sudden stratospheric warming (SSW). The major SSW event of February 2018 is analyzed using reanalysis datasets. Characterized by predominant planetary waves of zonal wave 2, the SSW developed into a vortex split via wave–mean flow interaction. In the following two weeks, the downward migration of zonal-mean zonal wind anomalies was accompanied by a significant transition to the negative phase of the North Atlantic Oscillation, leading to extensive cold extremes across Europe. Here, we demonstrate that anomalous Siberian snow accumulation could have played an important role in the 2018 SSW occurrence. In the 2017/18 winter, snow depths over Siberia were much higher than normal. A lead–lag correlation analysis shows that the positive fluctuating snow depth anomalies, leading to intensified “cold domes” over eastern Siberia (i.e., in a region where the climatological upward planetary waves maximize), precede enhanced wave-2 pulses of meridional heat fluxes (100 hPa) by 7–8 days. The snow–SSW linkage over 2003–19 is further investigated, and some common traits among three split events are found. These include a time lag of about one week between the maximum anomalies of snow depth and wave-2 pulses (100 hPa), high sea level pressure favored by anomalous snowpack, and a ridge anchoring over Siberia as precursor of the splits. The role of tropospheric ridges over Alaska and the Urals in the wave-2 enhancement and the role of Arctic sea ice loss in Siberian snow accumulation are also discussed

    Spinel oxide cathode material for high power lithium ion batteries for electrical vehicles

    Get PDF
    Electrical Vehicles (EVs) are very important in reducing fossil oil consumption and carbon emission in cities. Spinel LiNi0.5Mn1.5O4 is one promising cathode material for lithium ion batteries used in EVs owing to its high power density. Here AlF3 coated LiNi0.5Mn1.5O4 is prepared through an newly developed method. The spinel oxide sintered at 900 ĚŠC presents the best electrochemical performance with a specific discharge capacity of 132.4 mAh/g at 0.5 C. 81.0% of the initial specific capacity can be retained after 50 cycles. AlF3 coating can further improve the electrochemical performance. The initial specific capacity at 10 C is enhanced from 104.6 to 109.1 mAh g-1 with the capacities retention increasing from 80.6 to 92.1% after 100 cycles

    Aberrant hyper-expression of the RNA binding protein GIGYF2 in endothelial cells modulates vascular aging and function

    No full text
    Vascular endothelial cells (ECs) senescence plays a crucial role in vascular aging that promotes the initiation and progression of cardiovascular disease. The mutation of Grb10-interacting GYF protein 2 (GIGYF2) is strongly associated with the pathogenesis of aging-related diseases, whereas its role in regulating ECs senescence and dysfunction still remains elusive. In this study, we found aberrant hyperexpression of GIGYF2 in senescent human ECs and aortas of old mice. Silencing GIGYF2 in senescent ECs suppressed eNOS-uncoupling, senescence, and endothelial dysfunction. Conversely, in nonsenescent cells, overexpressing GIGYF2 promoted eNOS-uncoupling, cellular senescence, endothelial dysfunction, and activation of the mTORC1-SK61 pathway, which were ablated by rapamycin or antioxidant N-Acetyl-l-cysteine (NAC). Transcriptome analysis revealed that staufen double-stranded RNA binding protein 1 (STAU1) is remarkably downregulated in the GIGYF2-depleted ECs. STAU1 depletion significantly attenuated GIGYF2-induced cellular senescence, dysfunction, and inflammation in young ECs. Furthermore, we disclosed that GIGYF2 acting as an RNA binding protein (RBP) enhances STAU1 mRNA stability, and that the intron region of the late endosomal/lysosomal adaptor MAPK and mTOR activator 4 (LAMTOR4) could bind to STAU1 protein to upregulate LAMTOR4 expression. Immunofluorescence staining showed that GIGYF2 overexpression promoted the translocation of mTORC1 to lysosome. In the mice model, GIGYF2flox/flox Cdh-Cre+ mice protected aged mice from aging-associated vascular endothelium-dependent relaxation and arterial stiffness. Our work discloses that GIGYF2 serving as an RBP enhances the mRNA stability of STAU1 that upregulates LAMTOR4 expression through binding with its intron region, which activates the mTORC1-S6K1 signaling via recruitment of mTORC1 to the lysosomal membrane, ultimately leading to ECs senescence, dysfunction, and vascular aging. Disrupting the GIGYF2-STAU1-mTORC1 signaling cascade may represent a promising therapeutic approach against vascular aging and aging-related cardiovascular diseases
    corecore