211 research outputs found
Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals Across Chinese Cities and Implications for Medium Spatial Resolution Urban Aerosol Monitoring
In urban environments, aerosol distributions may change rapidly due to building and transport infrastructure and human population density variations. The recent availability of medium resolution Landsat-8 and Sentinel-2 satellite data provide the opportunity for aerosol optical depth (AOD) estimation at higher spatial resolution than provided by other satellites. AOD retrieved from 30 m Landsat-8 and 10 m Sentinel-2A data using the Land Surface Reflectance Code (LaSRC) were compared with coincident ground-based Aerosol Robotic Network (AERONET) Version 3 AOD data for 20 Chinese cities in 2016. Stringent selection criteria were used to select contemporaneous data; only satellite and AERONET data acquired within 10 min were considered. The average satellite retrieved AOD over a 1470 m1470 m window centered on each AERONET site was derived to capture fine scale urban AOD variations. AERONET Level 1.5 (cloud-screened) and Level 2.0 (cloud-screened and also quality assured) data were considered. For the 20 urban AERONET sites in 2016 there were 106 (Level 1.5) and 67 (Level 2.0) Landsat-8 AERONET AOD contemporaneous data pairs, and 118 (Level 1.5) and 89 (Level 2.0) Sentinel-2A AOD data pairs. The greatest AOD values (>1.5) occurred in Beijing, suggesting that the Chinese capital was one of the most polluted cities in China in 2016. The LaSRC Landsat-8 and Sentinel-2A AOD retrievals agreed well with the AERONET AOD data (linear regression slopes > 0.96; coefficient of determination r(exp 2) > 0.90; root mean square deviation < 0.175) and demonstrate that the LaSRC is an effective and applicable medium resolution AOD retrieval algorithm over urban environments. The Sentinel-2A AOD retrievals had better accuracy than the Landsat-8 AOD retrievals, which is consistent with previously published research.The implications of the research and the potential for urban aerosol monitoring by combining the freely available Landsat-8 and Sentinel-2 satellite data are discussed
Effects of fracturing fluid composition and other factors on improving the oil imbibition recovery of shale reservoir
Imbibition is an important mechanism of shale reservoir development. In exploring the factors affecting the enhanced recovery of shale reservoirs by imbibition, laboratory spontaneous and forced imbibition experiments were conducted using outcrop cores of shale reservoirs. The effects of imbibition agent composition, fracture, and pressure on imbibition are obtained in this work based on imbibition recovery test findings and imbibition theory. Results show that the imbibition curve includes three stages, namely, imbibition, transition, and stability. Among the components of compound fracking fluid, surfactants have the greatest impact, whereas emulsifiers have the least impact. Complex crack structures and high-temperature environments can improve imbibition recovery. Pressure is inversely proportional to imbibition recovery in the highly stress-sensitive shale reservoir. In addition, the throughput time of the imbibition agent has an optimal value in the shale reservoir. After the huff-n-puff time exceeds the optimal value, the imbibition agent should be replaced to continuously improve the imbibition effect. The research results can serve as a basis for enhancing oil recovery through imbibition.Document Type: Original articleCited as: Li, S., Ye, Z., Wang, J., Tang, L., Lai, N. Effects of fracturing fluid composition and other factors on improving the oil imbibition recovery of shale reservoir. Capillarity, 2023, 9(3): 45-54. https://doi.org/10.46690/capi.2023.12.0
Examination of Sentinel-2A Multi-spectral Instrument (MSI) Reflectance Anisotropy and the Suitability of a General Method to Normalize MSI Reflectance to Nadir BRDF Adjusted Reflectance
The Sentinel-2A multi-spectral instrument (MSI) acquires multi-spectral reflective wavelength observations with directional effects due to surface reflectance anisotropy and changes in the solar and viewing geometry. Directional effects were examined by considering two ten day periods of Sentinel-2A data acquired close to the solar principal and orthogonal planes over approximately 20° × 10° of southern Africa. More than 6.6 million (January 2016) and 10.6 million (April 2016) pairs of reflectance observations sensed 3 or 7 days apart in the forward and backscatter directions in overlapping Sentinel-2A orbit swaths were considered. The Sentinel-2A data were projected into the MODIS sinusoidal projection but first had to be registered due to a misregistration issue evident in the overlapping orbits. The top of atmosphere reflectance data were corrected to surface reflectance using the SEN2COR atmospheric correction software. Only pairs of forward and backward reflectance values that were cloud and snow-free, unsaturated, and had no significant change in their 3 or 7 day separation, were considered. The maximum observed Sentinel-2A view zenith angle was 11.93°. Greater BRDF effects were apparent in the January data (acquired close to the solar principal plane) than the April data (acquired close to the orthogonal plane) and at higher view zenith angle. For the January data the average difference between the surface reflectance in the forward and backward scatter directions at the Sentinel-2A scan edges increased with wavelength from 0.035 (blue), 0.047 (green), 0.057 (red), 0.078 (NIR), to about 0.1 (SWIR). These differences may constitute a significant source of noise for certain applications. The suitability of a recently published methodology developed to generate Landsat nadir BRDF-adjusted reflectance (NBAR) was examined for Sentinel-2A application. The methodology uses fixed MODIS BRDF spectral parameters and is attractive because it has little sensitivity to the land cover type, condition, or surface disturbance and can be derived in a computationally efficient manner globally. It was applied to the southern Africa Sentinel- 2A data and shown to reduce Sentinel-2A BRDF effects. The average difference between the reflectance in the forward and backward scatter directions at the Sentinel-2A scan edges was smaller in the NBAR data than in the corresponding surface reflectance data. Residual BRDF effects in the Sentinel-2A NBAR data occurred likely because of atmospheric correction and sensor calibration errors and inadequacies in the NBAR derivation approach. These issues are discussed with recommendations for future research including global and red-edge Sentinel-2A NBAR derivation that were not considered in this study
Networked Collaborative Sensing using Multi-domain Measurements: Architectures, Performance Limits and Algorithms
As a promising 6G technology, integrated sensing and communication (ISAC)
gains growing interest. ISAC provides integration gain via sharing spectrum,
hardware, and software. However, concerns exist regarding its sensing
performance when compared to dedicated radar systems. To address this issue,
the advantages of widely deployed networks should be utilized, and this paper
proposes networked collaborative sensing (NCS) using multi-domain measurements
(MM), including range, Doppler, and two-dimension angle of arrival. In the
NCS-MM architecture, this paper proposes a novel multi-domain decoupling model
and a novel guard band-based protocol. The proposed model simplifies
multi-domain derivations and algorithm designs, and the proposed protocol
conserves resources and mitigates NCS interference. To determine the
performance limits, this paper derives the Cram\'er-Rao lower bound (CRLB) of
three-dimension position and velocity in NCS-MM. An accumulated
single-dimension channel model is used to obtain the CRLB of MM, which is
proven to be equivalent to that of the multi-dimension model. The algorithms of
both MM estimation and fusion are proposed. An arbitrary-dimension Newtonized
orthogonal matched pursuit (AD-NOMP) is proposed to accurately estimate
grid-less MM. The degree-of-freedom (DoF) of MM is analyzed, and a novel
DoF-based two-stage weighted least squares (TSWLS) is proposed to reduce
equations without DoF loss. The numerical results show that the performances of
the proposed algorithms are close to their performance limits
Simulation Research on Very-Low-Level γ Ray Radiation Field Scattering Radiation
In order to build a very-low-level γ ray radiation field and its magnitude transfer system,the scattering contribution caused by different mechanical device structure is researched based on the experimental conditions of the Jinping underground laboratory in China. In this research,the Monte Carlo model of the irradiation device,the magnitude transfer detector,and the internal transmission structure of the shielding box were built in the MCNP5 software. After that,the scattering contribution caused by three spatial variables: the emission angle of the irradiation device,the distance between the detector and the edge of the shielding box,and the distance between the source and the detector,was simulated,and the appropriate device design and layout scheme were obtained. The emission angle of 20°,30° and 40° were used in this research. The energy deposition in sensitive area (with/without the shielding box) was recorded under three different distances between the source and the detector. Three locations of the irradiation device were designed to analyze the change of energy deposition caused by the change of locations. The energy deposition in sensitive area was simulated under more distances between the source and the detector. According to the data,the increase in energy deposition with the emission angle of 20° is less than that caused by the emission angle of 30° and 40°,and the increase in energy deposition is less when the irradiation device is far from the edge of the shielding box. In this research,energy deposition caused by scattering radiation under various irradiation conditions were obtained and analyzed,the device design and layout in the radiation field were optimized,and the idea for establishing an extremely-low-background radiation field was provided
Associating Polymer Networks Based on Cyclodextrin Inclusion Compounds for Heavy Oil Recovery
This work evaluates an approach to improve the enhanced heavy oil recovery performance of hydrophobic associating polymer. A polymeric system based on water-soluble hydrophobic associating polymer (WSHAP) and cyclodextrin (CD) polymer was proposed in this work. Addition of CD polymer to WSHAP forms interpolymer bridges by inclusion of CD groups with hydrophobic tails, and thereby the network structure is strengthened. The proposed system offers good viscoelasticity, pronounced shear thinning, and interesting viscosity-temperature relations. Sand pack tests indicated that the proposed system can build high resistance factor during the propagation in porous media, and its moderate adsorption phenomenon was represented by the thickness of the adsorbed layer. The relationship between effective viscosity and oil recovery increment indicated that the proposed system can significantly reduce the residual oil saturation due to the “piston-like” propagation. The overall oil recovery was raised by 5.7 and 24.5% of the original oil in place compared with WSHAP and partially hydrolyzed polyacrylamide (HPAM), respectively
- …