6,437 research outputs found

    Correction of high-order BDF convolution quadrature for fractional evolution equations

    Get PDF
    We develop proper correction formulas at the starting k1k-1 steps to restore the desired kthk^{\rm th}-order convergence rate of the kk-step BDF convolution quadrature for discretizing evolution equations involving a fractional-order derivative in time. The desired kthk^{\rm th}-order convergence rate can be achieved even if the source term is not compatible with the initial data, which is allowed to be nonsmooth. We provide complete error estimates for the subdiffusion case α(0,1)\alpha\in (0,1), and sketch the proof for the diffusion-wave case α(1,2)\alpha\in(1,2). Extensive numerical examples are provided to illustrate the effectiveness of the proposed scheme.Comment: 22 pages, 3 figure

    Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint

    Full text link
    In this work, we present numerical analysis for a distributed optimal control problem, with box constraint on the control, governed by a subdiffusion equation which involves a fractional derivative of order α(0,1)\alpha\in(0,1) in time. The fully discrete scheme is obtained by applying the conforming linear Galerkin finite element method in space, L1 scheme/backward Euler convolution quadrature in time, and the control variable by a variational type discretization. With a space mesh size hh and time stepsize τ\tau, we establish the following order of convergence for the numerical solutions of the optimal control problem: O(τmin(1/2+αϵ,1)+h2)O(\tau^{\min({1}/{2}+\alpha-\epsilon,1)}+h^2) in the discrete L2(0,T;L2(Ω))L^2(0,T;L^2(\Omega)) norm and O(ταϵ+h2h2)O(\tau^{\alpha-\epsilon}+\ell_h^2h^2) in the discrete L(0,T;L2(Ω))L^\infty(0,T;L^2(\Omega)) norm, with any small ϵ>0\epsilon>0 and h=ln(2+1/h)\ell_h=\ln(2+1/h). The analysis relies essentially on the maximal LpL^p-regularity and its discrete analogue for the subdiffusion problem. Numerical experiments are provided to support the theoretical results.Comment: 20 pages, 6 figure

    Discrete maximal regularity of time-stepping schemes for fractional evolution equations

    Get PDF
    In this work, we establish the maximal p\ell^p-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order α(0,2)\alpha\in(0,2), α1\alpha\neq 1, in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis [48] and its discrete analogue due to Blunck [10]. These results generalize the corresponding results for parabolic problems

    Numerical analysis of nonlinear subdiffusion equations

    Get PDF
    We present a general framework for the rigorous numerical analysis of time-fractional nonlinear parabolic partial differential equations, with a fractional derivative of order α(0,1)\alpha\in(0,1) in time. The framework relies on three technical tools: a fractional version of the discrete Gr\"onwall-type inequality, discrete maximal regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the fractional discrete Gr\"onwall inequality, and verify it for the L1 scheme and convolution quadrature generated by BDFs. Further, we provide a complete solution theory, e.g., existence, uniqueness and regularity, for a time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results of discrete maximal regularity, we derive pointwise L2(Ω)L^2(\Omega) norm error estimates for semidiscrete Galerkin finite element solutions and fully discrete solutions, which are of order O(h2)O(h^2) (up to a logarithmic factor) and O(τα)O(\tau^\alpha), respectively, without any extra regularity assumption on the solution or compatibility condition on the problem data. The sharpness of the convergence rates is supported by the numerical experiments
    corecore