89 research outputs found

    Enabling Seamless Access to Digital Graphical Contents for Visually Impaired Individuals via Semantic-Aware Processing

    Get PDF
    Vision is one of the main sources through which people obtain information from the world, but unfortunately, visually-impaired people are partially or completely deprived of this type of information. With the help of computer technologies, people with visual impairment can independently access digital textual information by using text-to-speech and text-to-Braille software. However, in general, there still exists a major barrier for people who are blind to access the graphical information independently in real-time without the help of sighted people. In this paper, we propose a novel multi-level and multi-modal approach aiming at addressing this challenging and practical problem, with the key idea being semantic-aware visual-to-tactile conversion through semantic image categorization and segmentation, and semantic-driven image simplification. An end-to-end prototype system was built based on the approach. We present the details of the approach and the system, report sample experimental results with realistic data, and compare our approach with current typical practice

    Atomically controlled, self-limiting procedures for growth of aluminum oxide on SiC-on-Si

    Get PDF
    Abstract number 0451, Abstract book page P-02-008Electronic devices fabricated from SiC/Si epitaxial wafers will need surface passivation and insulating coatings. For solar cell applications – and in MOS systems – Al-oxide thin film coatings have some strong advocates, not the least due to the advances of the ALD process. We have grown SiC/Si, formed by a remote CH4 plasma interacting with Si surfaces in UHV. After growing the SiC/Si system (SiC thickness between 0.5 and 5 nm; polycrystalline) a self-limiting Si-oxide layer was grown on the surface, with a thickness of around 1 nm, at 7000C. On top of this layer we deposited approximately 1 nm of Al with a Knudsen atomic source (all steps in UHV) and then reacted it thermally (at 6000C) with the Si-oxide. We monitored all the process steps and the resulting structures of the layers and the interface using synchrotron radiation induced core level photoemission at ASTRID, Aarhus, Denmark. We found similar qualities with this procedure, as for Si, i.e. an atomically sharp interface between Al-oxide and SiC, and this reaction scheme offers self-limiting behavior both of the oxidation to create Si-oxide, and to the conversion into Al-oxide, which only needs a sufficient amount of Al to affect the total conversion of the Si-oxide, while excess Al will leave the system at sufficiently elevated temperatures.publishersversionpublishe

    Ordered Au(111) layers on Si(111)

    Get PDF

    XPS and FT-IR investigation of silicate polymers

    Get PDF

    Demonstration of a Reconfigurable Entangled Radiofrequency-Photonic Sensor Network

    Full text link
    Quantum metrology takes advantage of nonclassical resources such as entanglement to achieve a sensitivity level below the standard quantum limit. To date, almost all quantum-metrology demonstrations are restricted to improving the measurement performance at a single sensor, but a plethora of applications require multiple sensors that work jointly to tackle distributed sensing problems. Here, we propose and experimentally demonstrate a reconfigurable sensor network empowered by continuous-variable (CV) multipartite entanglement. Our experiment establishes a connection between the entanglement structure and the achievable quantum advantage in different distributed sensing problems. The demonstrated entangled sensor network is composed of three sensor nodes each equipped with an electro-optic transducer for the detection of radiofrequency (RF) signals. By properly tailoring the CV multipartite entangled states, the entangled sensor network can be reconfigured to maximize the quantum advantage in distributed RF sensing problems such as measuring the angle of arrival of an RF field. The rich physics of CV multipartite entanglement unveiled by our work would open a new avenue for distributed quantum sensing and would lead to applications in ultrasensitive positioning, navigation, and timing.Comment: 17 pages, 12 figure
    • …
    corecore